期刊文献+

一种自适应免疫遗传算法及其在系统辨识和参数优化中的应用 被引量:8

An adaptive immune genetic algorithm and its application in system identification and parameter optimization
在线阅读 下载PDF
导出
摘要 基于遗传算法与免疫系统的机理,提出了一种自适应免疫遗传算法(AIGA).该算法定义了选择、扩展与突变等操作,通过对选择比例、扩展半径、突变半径的约束和参数的自适应调节,提高了算法的全局与局部搜索能力.同时,将AIGA用于系统辨识以及PID参数的优化中,进行了仿真实验,取得了较好的结果,证明了该方法的有效性. An adaptive immune genetic algorithm (AIGA) was proposed on the basis of genetic algorithm and immune principle. The operation of selection, expansion, and mutation was defined first for this algorithm, and its global and local searching ability was improved by means of constraining three new parameters such as selection scale, expansion radius, and mutation radius and adaptively adjusting them. A simulation test of system identification and PID parameter optimization was conducted with ALGA. A good result was obtained, so that the feasibility of this method was confirmed.
出处 《兰州理工大学学报》 CAS 北大核心 2006年第3期85-88,共4页 Journal of Lanzhou University of Technology
基金 国家重大科技攻关项目(2002BA901A28) 甘肃省省长基金(GS015-A52-012)
关键词 自适应免疫遗传算法(AIGA) 系统辨识 PID参数优化 adaptive immune genetic algorithm (ALGA) system identification PID parameter optimization
  • 相关文献

参考文献11

  • 1李萌,沈炯.基于自适应遗传算法的过热汽温PID参数优化控制仿真研究[J].中国电机工程学报,2002,22(8):145-149. 被引量:102
  • 2KRISTINSSON K,DUMONT G A.System identification and control using genetic algorithms[J].IEEE Trans Systems Man and Cybernetics,1992,22(5):1033-1046.
  • 3GREFENSTETTE J J.Optimization of control parameters for genetic algorithms[J].IEEE Trans Systems Man and Cybernetics,1986,16(1):122-128.
  • 4白惠卿,陈育民.医学免疫学和微生物学[M].北京:北京医科大学出版社,2002.
  • 5DE CASTRO L N,VON ZUBEN F J.Learning and optimization using the clonal selection principle[J].IEEE Trans on Evolutionary Computation,2002,6(3):239-251.
  • 6CHUN J S,KIM M K,JUNG HK,et al.Shape optimization of electronic devices using immune algorithm[J].IEEE Trans on Magnetics,1997,33(2):1876-1879.
  • 7TZAZWA I,KOAKUTSU S,HIRATA H.An evolutionary optimization based on the immune system and its application to the VLSI floor-plan design problem[J].Trans of the Institute of Electrical Engineers of Japan:Part C,1997,117-C(7):821-828.
  • 8左兴权,李士勇.一类自适应免疫进化算法[J].控制与决策,2004,19(3):252-256. 被引量:18
  • 9林丹,李敏强,寇纪凇.基于实数编码的遗传算法的收敛性研究[J].计算机研究与发展,2000,37(11):1321-1327. 被引量:59
  • 10左兴权,李士勇.一种用于优化计算的自适应免疫算法[J].计算机工程与应用,2003,39(20):68-70. 被引量:13

二级参考文献26

  • 1黄正良,万百五,韩崇昭.辨识Hammerstein模型的两步法[J].控制理论与应用,1995,12(1):34-39. 被引量:26
  • 2张晓缋,戴冠中,徐乃平.一种新的优化搜索算法──遗传算法[J].控制理论与应用,1995,12(3):265-273. 被引量:97
  • 3徐南荣 宋文忠.系统辨识[M].南京:东南大学出版社,1991..
  • 4陈传璋.数字分析(第二版)[M].北京:高等教育出版社,1983..
  • 5NirwanA EdwinH.用于最优化的计算智能[M].北京:清华大学出版社,1999..
  • 6Jang-Sung Chun.Shape optimization of electro-magnetic devices using immune algorithm[J].IEEE transactions on magnetics,1997;33 (2) : 1876-1879.
  • 7Leandro N de Castro.Learning and optimization using the clonal selection principle[J].IEEE transactions on evolutionary computation, special issue on artificial immune systems,2001.
  • 8Licheng Jiao,lei wang.A novel genetic algorithm based on immunity [J].IEEE transactions on system,man,and cybernetics Part A :systems and Humans,2000 ;30(5).
  • 9G L Ada,G Nossal.the clonal selection theory[J].Scientific American, 1987;257(2) :50-57.
  • 10Qiang Langzi,IEEE Trans On Autom Control,1997年,42卷,10期,1435页

共引文献241

同被引文献63

引证文献8

二级引证文献32

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部