期刊文献+

一种基于矢量量化的高光谱遥感图像压缩算法 被引量:6

A compression algorithm of hyperspectral remote sensing image based on vector quantization
在线阅读 下载PDF
导出
摘要 压缩是高光谱遥感(hyperspectral remote sensing)图像的一个重要研究领域.文中充分考虑了高光谱遥感图像的谱间相关性较强而空间相关性相对较弱的特点,采用了自适应波段选择降维方法与基于神经网络的矢量量化方法相结合的方法对高光谱遥感图像进行压缩.首先采用自适应波段选择(Adaptive band selection)的谱间压缩方法,通过自适应地选择信息量大并且与其他波段相关性小的波段来降低高光谱数据量.然后对降维后图像在空间进行小波变换并进行矢量量化,最后对量化后数据进行自适应算术编码.实验结果表明,谱间压缩能够保留信息丰富的波段,同时计算复杂度大大降低;基于神经网络的SOFM算法及其改进算法取得较好的空间压缩效果,实现了对高光谱遥感图像的有效压缩. Compression is an important research field of hyperspectral remote sensing images. Proposed is a method to compress hyperspectral remote images that combines a dimensional reduction algorithm of adaptive band selection with an algorithm using codebook design that is based on a self organization feature maps (SOFM). First, a dimensional reduction algorithm of adaptive band selection was developed to reduce dimensions by adaptively selecting a great deal of information and low correlative bands. Second, wavelets transformations and vector quantization were applied to reduced the images. Finally, using vector quantization, adaptive arithmetic coding was applied to the data. Experimental results show that spectrum compression can contain significant information bands while greatly decreasing computing complications. The SOFM algorithm based on a neural network and an improved algorithm have a good effect on space compression of hyperspectral remote sensing images.
出处 《哈尔滨工程大学学报》 EI CAS CSCD 北大核心 2006年第3期447-452,共6页 Journal of Harbin Engineering University
关键词 高光谱遥感图像 矢量量化 神经网络 自适应波段选择 图像压缩 hyperspectral remote sensing image vector quantization neural network adaptive band selection image compression
  • 相关文献

参考文献9

  • 1张晔,张钧萍.遥感超谱(Hyperspectral)图象处理技术[J].中国图象图形学报(A辑),2001,6(1):6-13. 被引量:11
  • 2SWELDENS W. The lifting scheme: a construction of second generation wavelets[J]. SIAM Math Anal, 1997, 29(2):511-546.
  • 3NASRABADI N M, FENG Y. Vector quantization of images based upon the Kohonen self-organizing feature maps[A]. Proc ICNN[C]. San Diego, 1988.
  • 4ALCEU D S, BRITTO J, PAULO S L. A low-cost parallel K-means VQ algorithm using cluster computing [A]. IEEE Proceedings of the Seventh International Conference on Document Analysis and Recognition[C]. Edinburgh, Scotland, 2003.
  • 5YANG X Y. An Enhanced SOFM method for automatic recognition and identification.of digital modulations[A]. IEEE Computer Society[C]. Perth, Anstralia, 2004.
  • 6阎敬文.数字图像处理技术与图像图形学基本教程[M].北京:科学出版社,2002.
  • 7TEUVO K. Self-organizing maps of massive document collections [A]. IEEE-INNS-ENNS International Joint conference on Neural Networks (IJCNN'00) [C]. Como,Italy, 2000.
  • 8陆哲明,孙圣和.基于自组织特征映射神经网络的矢量量化[J].中国图象图形学报(A辑),2000,5(10):846-850. 被引量:10
  • 9冯燕,何明一,魏江.基于神经网络的多光谱遥感图像无损压缩[J].遥感技术与应用,2004,19(1):42-46. 被引量:4

二级参考文献24

  • 11,Linde Y,Buzo A,Gray R M.An algorithm for vector quantizer design.IEEE Trans.On Commun.,1980,28(1):84~95.
  • 22,Gersho A,Gray R M.Vector quantization and signalcompression.Boston,MA:Kluwer,1992.
  • 33,Nasrabadi N M,Feng Y.Vector quantization of images based upon the Kohonen self-organizing feature maps.Proc.ICNN,San Diego,1988,1:101~108.
  • 44,Bei C D,Gray R M.An improvement on minimum distortion encoding algorithm for vector quantization.IEEE Trans.On Commun.,1985,33(10):1132~1133.
  • 5Jimenez L O, Landgrebe D A. Supervised classification in high- dimensional spece: Geometrical, statistical, and asymptotical properties of multivariate data. IEEE Trans. On System, Man, and Cybernetics-Part C: Applications and Reviews 1998 28(1):39-54.
  • 6Tu Te Ming, Chert Chin Hsing. A fast two stage elassification method for bigh dimensional remote sensing data. IEEE Trans.on Geoscienee and Remote Sensing, 1S98,36(1) :182-191.
  • 7Jia Xiuplng, Richards J A. Segmented principal componemts transformation for efficient hyperspeetral remote sensing image display and classification. IEEE Trans. On Geoscience and Remote Sensing, 1999,37(1) : 538-942.
  • 8Zhang Ye, DesaiMD, Zhang Junping et al. Adaptive subspace decomposition for hyperspectral data dimensionality reduction, In:International Conference on Image Processing (ICIP99'), Kobe, Japan,1999:326-329.
  • 9Benediktsson J A, Sveinsson J S, Arnason K. Classification and feature extraction of AVIRIS data. IEEE Trans. On Geoseience and Remote Sensing, 1995,33(5):1194-1205
  • 10Harsanyi J C, Chang Chein I. Hyperspectral image ctassification and dimensionality reduction: An orthogonal subspace projection approach. IEEE Trans. On Geoscience and Remote Sensing, 1994,32(4) : 779-785.

共引文献21

同被引文献115

引证文献6

二级引证文献25

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部