期刊文献+

L-J流体自扩散系数及其与温度关系的分子动力学模拟 被引量:2

Molecular dynamics simulation of self-diffusion coefficient and its relation with temperature using simple Lennard-Jones potential
在线阅读 下载PDF
导出
摘要 扩散系数在化工设计和研究中是不可缺少的传递特性。但其数据却相对缺乏,因此需要寻找一种方法来预测这个特性就显得十分重要。利用分子动力学方法模拟了简单流体的自扩散系数。模拟分别采用Green-Kubo法(VACF:velocity autocorrelation function)和Einstein法(MSD:mean square displacement)。模拟结果与实验数据吻合较好,误差在10%左右。两种方法的平均值与实验结果误差在7%左右。同时还模拟了流体自扩散系数随温度的变化关系。结果表明,自扩散系数与温度满足Arrenhius关系,数据相关性在0.99以上,计算得到的自扩散激活能分别为1 258 J/mol(VACF)、1 272 J/mol(MSD)和平均值1 265 J/mol。 Diffusion coefficient is indispensable to chemical engineering design and research. However, there is great lack of such data. By the means of molecular dynamics simulation, self-diffusion coefficient for simple fluid has been simulated using Green-Kubo relation (VACF: velocity autocorrelation function) and Einstein relation (MSD: mean square displacement). The simulation results make good agreement with experimental findings except an error of about 10%. And, the average of simulation results of the two methods (average) reduces the error to 7%. The relation of diffusion coefficient with temperature has also been simulated. According to simulation results, whose correlation is all above 0. 99, diffusion coefficient agrees well with temperature following Arrenhius relation. Activation energy for self-diffusion has been calculated and the results are 1 258 J/mol (VACF), 1 272 J/mol (MSD) and 1 265 J/mol (average) separately.
出处 《热科学与技术》 CAS CSCD 2006年第2期101-105,共5页 Journal of Thermal Science and Technology
基金 国家自然科学基金委资助项目(50475100)
关键词 L-J流体 分子动力学 自扩散系数 数值模拟 激活能 Lennard-Jones fluid molecular dynamics self-diffusion coefficient numerical simulation activity energy
  • 相关文献

参考文献9

  • 1杨小震.分子模拟与高分子材料[M].北京:科学出版社,2003.
  • 2McQUARRIE D A.Statistical mechanics[M].New York:Harper and Row,1976.
  • 3MEIER K,LAESECKE A,KABELAC S.A molecular dynamics simulation study of the self-duffusion coefficient and viscosity of the lennard-jones fluid[J].Int J of Thermophys,2001,22(1):161.
  • 4孙炜,陈中,黄素逸,陈金芳.L-J流体扩散系数的分子动力学模拟[J].华中科技大学学报(自然科学版),2004,32(5):84-86. 被引量:5
  • 5RAPAPORT D C.The art of molecular dynamics simulation[M].Cambridge:Cambridge Univ.Press,2004.
  • 6ALLEN M E,TILDESLEY D J.Computer simulation of liquids[M].Oxford:Clarendon Press,1987.
  • 7NAGHIZADEH J,RICE S A.Kinetic theory of dense fluids.X.measurement and interpretation of self-diffusion in liquid Ar,Kr,Xe,and CH4[J].The J of Chem Phys,1962,36(10):2710.
  • 8ROWLEY R L,PAINTER M M.Diffusion and viscosity equations of state for a Lennard-Jones fluid obtained from molecular dynamics simulations[J].Int J of Thermophys,1997,18(5):1109.
  • 9孙炜,陈中,黄素逸.模型流体扩散系数与温度关系的分子动力学模拟[J].武汉化工学院学报,2005,27(4):1-4. 被引量:5

二级参考文献17

  • 1胡英,刘洪来.分子工程和化学工程[J].化学进展,1995,7(3):235-251. 被引量:21
  • 2Allen M P,Tildesley D J.Computer simulation of liquids[M].Oxford:Oxford University Press,1987.
  • 3Liem S Y,Brown D,Clarke J H R.An investigation of the homogeneous shear nonequilibrium molecular dynamics method[J].Phys Rev A,1992,45:3706-3713.
  • 4Travis K P,Searles D J,Evans D J.Strain-rate dependent properties of a simple fluid[J].Mol Phys,1998,95:195-202.
  • 5Petravic J,Evans D J.Approach to the nonequilibrium time-periodic state in a steady shear flow model[J].Mol Phys,1998,95:219-231.
  • 6Jolly D L,Bearman R J.Molecular dynamics simulation of the mutual and self-diffusion coefficients in Leennard-Jones liquid mixtures[J].Mol Phys,1981,41:137-147.
  • 7Schoen M,Hoheisel C.The matual diffusion coefficient D12 in binary liquid model mixture[J].Mol Phys,1984,52(1):33-56.
  • 8Nose S.A molecular dynamics method for simulations in the canonical ensemble[J].Mol Phys,1984,52(2):255-268.
  • 9Verlet L.Computer "experiments" on classical fluids.I.Thermodynamical properties of Lennard-Jones molecules[J].Phys Rev,1967,159:98-103.
  • 10Naghizadeh J,Rice S A.Kinetic theory of dense fluids X.Measurement and interpretation of self-diffusion in liquid Ar,Kr,Xe,and CH4[J].J Chem Phys,1962,36(13):2710-2720.

共引文献8

同被引文献11

引证文献2

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部