期刊文献+

红球菌PR-1菌株破乳性能研究 被引量:19

Performance of Demulsification by Rhodococcus sp.PR-1
在线阅读 下载PDF
导出
摘要 利用乳化剂Span 80配制出一种稳定的煤油-水乳浊液作为模型乳浊液,进而从大港油田废水中筛选出1株破乳能力较强的红球菌PR-1.该菌株培养液在55℃下8h可以使模型乳浊液完全破乳,且在实验条件下比化学破乳剂DGF-01具有更强的破乳活性.研究发现,乳浊液的破乳为线性增长过程,冻融和高压灭菌对其破乳能力没有影响,菌体细胞是破乳的主要活性成分,经超声波破碎及有机溶剂处理后其破乳活性显著降低.菌体表面有很强的疏水性,其对烃的枯附率为84%,碳链长度范围在C27~C54的枝菌酸类物质是保持菌体细胞完整性和疏水性的关键,其对细胞的破乳活性也至关重要.PR-1菌株发酵液用于原油乳状液的破乳具有操作方便,破乳率高,应用面广,无毒无害等优点,且能完全脱出J9-19原油乳状液中的水,因此可作为原油乳状液或油田采出水的破乳剂. Rhodococcus sp. PR-1 with high capability of demulsification on a surfactant-stabilized kerosene-water model emulsion was isolated from sewage of Dagang oil field. It could demulsify the model emulsion completely in 8 hours at 55℃ and had better demulsifying capability than chemical demulsifier DGF-01. The freezing-thawing and autoclaving had no effect on the process of demulsification, yet ultrasonic disposal and deal with organic solvent could inhibit its activity. A linear relationship, not the first order reaction that was used in some references, was observed between the percentage of demulsification and reaction time. The demulsifying capability of PR-1 was mainly resulted from the hydrophobic surfaces of microbial cells, which were characterized by the mycolic acids with the carbon-chain-length from 27 to 54. These results provide foundation for biological application on demulsifying crude oil emulsions in produced water of oil field.
出处 《环境科学》 EI CAS CSCD 北大核心 2006年第6期1191-1196,共6页 Environmental Science
基金 教育部南开大学-天津大学科技合作基金项目
关键词 红球菌 乳状液 生物破乳 枝菌酸 原油 Rhodococcus sp. emulsion bio-demulsification mycolic acids crude oil
  • 相关文献

参考文献19

  • 1姚允武,裘祖楠.胶体与表面化学导论[M].天津:南开大学出版社,1988.165~258.
  • 2杨小莉,陆婉珍.有关原油乳状液稳定性的研究[J].油田化学,1998,15(1):87-96. 被引量:132
  • 3Chen C M, Lu C H, Chang C H, et al. Influence of pH on the stability of oil-in-water emulsions stabilized by a splittable surfactant [ J ]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2000, 170: 173- 179.
  • 4Rosenberg M. Bacterial adherence to hydrocarbons: a useful technique for studying cell surface hydrophobicity [ J ]. FEMS Microbiology Letters, 1984, 22 : 289-295.
  • 5Richard S P, Kevin C M, et al. Cell surface analysis techniques: what do cell preparation protocols do to cell surface properties? [J ] Applied Environment Microbiology, 1999, 65:2877- 2894.
  • 6Francois A, Michel P, Philippe J, et al. Influence of electrical properties on the evaluation of the surface hydrophobicity of Bacillus subtilis [ J ]. Journal of Microbiological Methods,2001, 45: 119-126.
  • 7Stratton H M, Brook P R, Seviour R J. Analysis of the structural diversity of mycolic acids of Rhodococcus and Gordonia isolates from activated sludge foams by selective ion monitoring gas chromatography-mass spectrometry (SIM GCMS)[J ]. Journal of Microbiology Methods, 1999, 35: 53-63.
  • 8Steven R H, Jennifer D T. Analysis of mycolic acids by high-performance liquid chromatography and fluorimetric detection implications for the identification of mycobacteria in clinicalsamples [J ]. Journal of Chromatography A, 1995, 692 : 167-172.
  • 9Suteliffe I C. Cell envelope composition and organisation in the genus Rhodococcus[J ]. Antonie van Leeuwenhoek, 1998, 74:49-58.
  • 10夏立新,曹国英,陆世维,张路,俞稼镛.原油乳状液稳定性和破乳研究进展[J].化学研究与应用,2002,14(6):623-627. 被引量:47

二级参考文献99

共引文献171

同被引文献309

引证文献19

二级引证文献62

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部