期刊文献+

一种基于粗糙集的软件产品用户满意度评价方法 被引量:4

A Rough Set-Based Model and Method for User Satisfaction Measurement of Software Products
在线阅读 下载PDF
导出
摘要 在对现有的软件产品质量度量方法进行分析的基础上,提出了一种基于粗糙集的属性权重分配方法通过已知数据寻找出对总体用户满意度影响不同的各属性权重因子,发现影响产品质量的关键因素,以揭示质量改进与用户满意度之间的内在互动关系.同时把单层次的知识细化成多层次知识,有助于提高权重设置的精确度,并且结合专家意见更合理的设置权重,弥补了现有方法的不足. Researching the theory of evaluating index of user satisfaction degree, this paper builds a model and proposes a method to determine objective weights of software products quality based on rough sets. The model and method reflects an internal relationship between quality improvement and user satisfaction degree through external data which can find out the key factors affecting software products quality. Also, subdividing information of monolayer into that of multilayer and combining objective weights and subjective weights given by experts, the model and method improves the accuracy of weights and remedies the inadequacy of existin methods.
出处 《西南师范大学学报(自然科学版)》 CAS CSCD 北大核心 2006年第3期101-104,共4页 Journal of Southwest China Normal University(Natural Science Edition)
基金 重庆市自然科学基金资助项目(CSTC 2004BB0146) 重庆市信息产业发展基金资助项目(200401021)
关键词 粗糙集 权重分配 用户满意度 rough set weights allocation user satisfaction degree
  • 相关文献

参考文献6

二级参考文献19

  • 1王珏,苗夺谦,周育健.关于Rough Set理论与应用的综述[J].模式识别与人工智能,1996,9(4):337-344. 被引量:264
  • 2曾黄麟.粗集理论及应用[M].重庆大学出版社,1998..
  • 3张文修 等.Rough集理论与方法[M].北京:科学出版社,2001..
  • 4Agrawal R, Imielinski T, Swami A. Mining Association Rules Between Sets of Items in Large Database [A]. Proceeding of the ACM-SIGMOD Conference On Management of data [C]. Washington: ACM Press, 1993. 207 - 216.
  • 5Agrawal R, Srikant R. Fast Algorithms for Mining Association Rules [A]. Proceedings of the 20th VLDB Conference [C]. Santiago: ACM Press, 1994. 487- 499.
  • 6Richard Relue, Xindong Wu, Hao Huang. Efficient Runtime Generation of Association Rules [C]. Proceeding of 2001ACM CIKM Tenth International on Information Knowledge Management. New York: ACM Press, 2001.
  • 7Z. Pawlak. Rough Sets [J]. International Journal of Computer and Information Science, 1982, 11 : 341 - 356.
  • 8S K M Wong, W Ziarko. On optimal Decision Rules in Decision Tables [J]. Bulletin of Polish Academy of Sciences,1985, 33(11 - 12): 693 - 696.
  • 9Guan J W, Bell D A. Rough Computational Method for Information Systems [J]. Artificial Intelligence, 1998; 105(1/2): 77-103.
  • 10刘清,黄兆华,姚力文.Rough集理论:现状与前景[J].计算机科学,1997,24(4):1-5. 被引量:34

共引文献320

同被引文献29

  • 1杨明,孙志挥.改进的差别矩阵及其求核方法[J].复旦学报(自然科学版),2004,43(5):865-868. 被引量:71
  • 2张贤勇,莫智文.知识格[J].工程数学学报,2005,22(3):567-570. 被引量:3
  • 3尹春勇,李坚石,李少波.一种结合特征相关的软件质量研究[J].计算机应用研究,2007,24(7):22-23. 被引量:2
  • 4[1]Ian Sommerville.软件工程[M].第6版.北京:机械工业出版社/中信出版社,2005.
  • 5[2]Burnstein,Suwanassart T,Carlson C R.Developing A Testing Maturity Model,Part I[J].CrossTalk,1996,9(8).
  • 6[3]Basili V R,Caldiera G,Rombach H D.Goal Question Metric Paradigm[C] //Encyclopedia of Software Engineering.New York:John Wiley&Sons,Inc.,1994:528-532.
  • 7[4]Lionel C B,Christiane M D,Rombach H D.Practical Guidelines for Measurement-Based Process Improvement.Software Process Improvement and Practice Journal,1997,2(4).
  • 8Pawlak Z.Rough Set[J].International Journal of Computer and Information Sciences.1982,1(11):341-356.
  • 9Skowron A,Rauszer C.The Discernibility Matrices and Functions in Information Systems[C] //Slowinski I.Intelligent decision support handbook of application and advances of the Rough Sets Theory.Dordrect:Kluwer Academic Publisher,1991:331-362.
  • 10KHOSHGOFTAAR, TAGHI M, BULLARD, et al. Attribute Selection Using Rough Sets in Software Quality Classification [J]. International Journal of Reliability, Quality ~ Safety Engineering, 2009, 16(2) : 17, 73-89.

引证文献4

二级引证文献19

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部