期刊文献+

基于模糊核聚类的SVM多类分类方法 被引量:6

SVM multi-class classification based on fuzzy kernel clustering
在线阅读 下载PDF
导出
摘要 针对SVM在大类别模式分类中存在的问题,提出了一种基于模糊核聚类的SVM多类分类方法,并给出了一种高效的半模糊核聚类算法。该方法基于模糊核聚类方法生成模糊类,并采用树结构将多个SVM组合起来实现多类分类。模糊核聚类方法不但能够实现更为准确的聚类,而且能够挖掘模糊类的外围、不同模糊类之间的交叠情况等信息,利用这些信息能有效提高分类器的性能。实验表明,所提方法比传统方法具有更高的速度和精度。 Aimed at the problems of support vector machines(SVM) for multi-class pattern recognition with large number of catalogs, a new method of SVM multi-class classification based on fuzzy kernel clustering is proposed. In addition, an efficiency semi-fuzzy kernel clustering algorithm is presented. The new method defines confusion classes based on fuzzy kernel clustering and builds binary trees of support vector machines for the multi-class classification. The fuzzy kernd clustering can not only obtain a better performance than classical clustering, but also provide information about the boundary of a confusion class and the overlap between classes. The performance of support vector machines can be improved efficiently by using the information, Experimental results indicate that the new method yields higher precision and speed than classical SVM multi-class classification methods.
作者 赵晖 荣莉莉
出处 《系统工程与电子技术》 EI CSCD 北大核心 2006年第5期770-774,共5页 Systems Engineering and Electronics
基金 国家自然科学基金重点项目资助课题(70431001)
关键词 支持向量机 多类分类 模糊核聚类 树型分类器 support vector machine multi-class classification fuzzy kernel clustering tree classifier
  • 相关文献

参考文献17

  • 1Burges J C.A tutorial on support vector machines for pattern recognition[J].Data Mining and Knowledge Discovery,1998,2(2):121-167.
  • 2Weston J,Watkins C.Support vector machines for multi-class pattern recognition[C]∥ Proc.ESANN 99,1999:219-224.
  • 3Krebel U.Pairwise classification and support vector machines[M].MA:MIT Press,1999:255-268.
  • 4Platt J C,Cristianini N,Shawe-Taylor J.Large margin DAGs for multiclass classification[J].Advances in Neural Information Processing Systems,2000,12(3):547-553.
  • 5Bottou L,Cortes C,Denker J,et al.Comparison of classifier methods:a case study in handwriting digit recognition[C]∥ Proc.Int.Conf.Pattern Recognition,1994:77-87.
  • 6Fumitake Takahashi,Shigeo Abe.Decision-Tree -Based multiclass support vector machines[C]∥ Proceedings of the 9th International Conference on Neural Information Processing,2002:1418-1422.
  • 7Friedhelm Schwenker.Hierarchical support vector machines for multi-class pattern recognition[C]∥ Fourth Int.Conf.on Knowledge-based Intelligent Engineering System & Allied Technologies,2000:561-565.
  • 8Cecilio Angulo,Xavier Parra,K-SVCR Andreu Catala.A support vector machine for multi-class classification[J].Neurocomputing,2003,55(9):55-77.
  • 9Hsu C W,Lin C J.A comparison of methods for multi-class support vector machines[J].IEEE Transactions on Neural Networks,2002,13(2):415-425.
  • 10伍忠东,高新波,谢维信.基于核方法的模糊聚类算法[J].西安电子科技大学学报,2004,31(4):533-537. 被引量:75

二级参考文献34

  • 1Dave R N. Generalized Fuuzy C-shell Clustering and Detection of Circular and Elliptical Boundaries[J]. Pattern Recognition, 1992, 25(7): 639-641.
  • 2Krishnapuram R, Frigui H, Nasraui O. The Fuzzy C Quadric Shell Clustering Algorithm and the Detection of Second-degree[J]. Pattern Recognition Letters, 1993, 14(7): 545-552.
  • 3Girolami M. Mercer Kernel Based Clustering in Feature Space[J]. IEEE Trans on Neural Networks, 2002, 13(3): 780-784.
  • 4Burges C J C. Geometry and Invariance in Kernel Based Methods[A]. Advance in Kernel Methods-Support Vector Learning[C]. Cambridge: MIT Press, 1999. 89-116.
  • 5Scholkopf B, MIka S, Burges C, et al. Input Space Versus Feature Space in Kernel-based Methods[J]. IEEE Trans on Neural Networks, 1999, 10(5): 1000-1017.
  • 6Bezdek J C. Pattern Recognition with Fuzzy Objective Function Algorithms[M]. New York: Plenum Press, 1981.
  • 7Bezdek J C. Convergence Theory for Fuzzy C-Means: Counterexamples and Repaires[J]. IEEE Trans on SMC, 1987, 17(4): 873-877.
  • 8Bezdek J C, Keller J M, Krishnapuram R, et al. Will the Real IRIS Data Please Stand Up?[J]. IEEE Trans on Fuzzy System, 1999, 7(3): 368-369.
  • 9Chernoff D F. The Use of Faces to Represent Points in k-dimensional Space Graphically[J]. Journal of American Statistic Association, 1999, 58(342): 361-368.
  • 10高新波,IEEE ISPACS’98,1998年,387页

共引文献363

同被引文献57

引证文献6

二级引证文献31

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部