期刊文献+

时变环境下Chemostat中微生物连续培养食物链模型的分歧分析 被引量:3

Bifurcation Analysis to a Food Chain Model in Chemostat with Time Varying Environment
在线阅读 下载PDF
导出
摘要 研究均匀搅拌的Chemostat中微生物连续培养的单食物链模型.模型的特点是在营养输入项中引入时变环境,以便更逼真地模拟自然现象.用单特征值分歧定理得到了周期解存在的条件,用Crandall-Rabinowitz定理证明了单种群分歧解的稳定性. This paper deals with a food chain model of microbial continuous culture in Chemostat with time varying environment. The existence of periodic solutions is determined by the bifurcation theory from simple eigenvalues. In addition, the stability of periodic solutions for one species model is obtained via the Crandall-Rabinowitz stability theorems.
作者 刘婧 郑斯宁
出处 《生物数学学报》 CSCD 北大核心 2006年第1期89-96,共8页 Journal of Biomathematics
基金 国家自然科学基金资助项目(19871008)
关键词 CHEMOSTAT 食物链 时变环境 分歧 稳定性 Chemostat Food chain Time varying environment Time varying bifurcation Stability
  • 相关文献

参考文献12

  • 1Smith H I.Competitive coexistence in an oscillating Chemostat[J].SIAM J Appl Math,1981,40(3):498-521.
  • 2Baxley J V,Robinson S B.Coexistence in the unstirred Chemostat[J].Appl Math Compt,1998,89(1):41-65.
  • 3刘婧,郑斯宁.一类微生物连续培养竞争模型的定性分析[J].生物数学学报,2002,17(4):399-405. 被引量:11
  • 4Hsu S B,Waltman P.On a system of reaction-diffusion equations arising from competition in an unstirred Chemostat[J].SIAM J Appl Math,1993,53(4):1026-1044.
  • 5Dung L,Smith H L.A parabolic system modeling microbial competition in an unmixed bio-reactor[J].Differential Equations,1996,130(1):59-91.
  • 6Bally M,Dung L,Jones D A,Smith H L.Effects of random motility on microbial growth and competition in a flow reactor[J].SIAM J Appl Math,1998,59(4):573-596.
  • 7Baxley J V,Thompson H B.Nonlinear boundary value problems and competition in the Chemostat[J].Nonlinear Anal,1994,22(3):1329-1344.
  • 8Boer M P,Kooi B W,kooijman S A L M.Food chain dynamics in the Chemostat[J].Math Biosci,1998,150(1):43-62.
  • 9Kooi B W,Boer M P,kooijman S A L M.Pesistance of a food chain to invasion by a top predator[J].Math Biosci,1999,157(4):217-236.
  • 10Vayenas D V,Pavlou S.Chaotic dynamics of a microbial system of coupled food chains[J].Ecological Modelling,2001,136(2):285-295.

二级参考文献14

  • 1Chen L S. Chen J. NonlinearDynamical Systems in Biology[M]. Beijing: Science Press, 1993, 183-191.
  • 2Hsu S B. Smith H I, Waltman P. Dynamics of competition in the unstirredChemostat[J]. Canadian Appl Math Quarterly. 1994,2(4):461-483.
  • 3So J W, Waltman P. A nonlinear boundary value problem arising from competition inthe Chemostat[J].Applied Math and Comp, 1989, 32(2 3):169-183.
  • 4Hsu S B, Waltman P. On a system of reaction-diffusion equations arising fromcompetition in an unstirred Chemostat [J], SIAM J Appl Math, 1993, 53(4):1026-1044.
  • 5Baxley J V, Thompson H B. Nonlinear boundary value problems and competition in theChcmostat [J].Nonlinear Analysis TMA, 1994, 22(11):1329-1344.
  • 6Bally M, Dung L, Jones D A et al. Effects of ramdom motility on microbial drowthadn compeition in a flow reactor [J]. SIAM J Appl Math, 1998, 59(2):573-596.
  • 7Baxley J V. Robinson S B. Coexistence in the unstired Chemostat[J]. Applied Mathand Comp. 1998, 89(13):41 -65.
  • 8Smoller J. Shock Waves and Reaction Diffusion Equations[M]. New York:Springer-Verlag, 1983, 167-180.
  • 9Hale J. Waltman P. Persistence in ininite dymensional systems[J]. SIAM J Math Anal,1989, 20(2):388-395.
  • 10Hsu S B, Waltman P. Analysis of a model two competitors in a Chemostat with an external inhibitor[J].SIAM J Appl Math, 1991, 52(2):528-540.

共引文献21

同被引文献46

引证文献3

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部