期刊文献+

具有阶段结构和Logistic死亡的传染病模型

A Epidemic Model with Stage-structure and Logistic Death Rate
在线阅读 下载PDF
导出
摘要 研究了一类具有Logistic死亡且成年染病的SIS阶段结构模型的渐近形态,讨论了无病平衡点和地方病平衡点的存在性及局部和全局稳定性,得出了疾病消除和成为地方病的阈值. In this paper,the asymptotic behavior of a structured SIS epidemic model with Logistic death rate is studied. Sufficient conditions for the existence and locally and globally asymptotic stability of the disease free equilibrium and endemic equilibrium are obtained.The threshold is found which the epidemic will become endemic or die out.
出处 《石家庄学院学报》 2006年第3期17-21,共5页 Journal of Shijiazhuang University
关键词 传染病 阶段结构 Logistic死亡 渐近稳定 阈值 epidemic stage structure logistic death rate asymptotically stable threshold
  • 相关文献

参考文献4

二级参考文献8

  • 1马知恩.种群动力学的数学建模与研究[M].安徽教育出版社,1996..
  • 2Anderson R M, May R M. Population biology of infectious diseases [J]. Nature, 1979;180:361 -367.
  • 3Capasso V. Mathematical structures of epidemic system[M], of Lecture notes in Biomathematics, Springer-Verlay, Berlin, 1993.
  • 4Walter G, Alello, Freedman H I. A time-delay of single species growth with stage structure[J]. Mathematical Bioscience, 1990, 101:139-153.
  • 5Walter G, Alello Freedman H I, Wu J. Analysis of a model representing stage-structured populations growth with stage-dependent time delay[J]. SIAM J Appl Math, 1992, 52(3):855-869.
  • 6Yang Kuang. Delay Differential Equation with Applications in Population Dynamics[M]. Boston: Academic Press Inc. 1993, 76-77.
  • 7胡志兴,王辉,管克英.具有非线性接触率和时滞的SIRS流行病模型[J].应用数学学报,1999,22(1):10-16. 被引量:13
  • 8原存德,胡宝安.具有阶段结构的SI传染病模型[J].应用数学学报,2002,25(2):193-203. 被引量:52

共引文献103

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部