期刊文献+

RLGA:一种基于强化学习机制的遗传算法 被引量:9

RLGA:A Reinforcement Learning Based Genetic Algorithm
在线阅读 下载PDF
导出
摘要 分析了强化学习与遗传算法工作机制,在提出基因空间分割概念的基础上,提出了一种将强化学习与遗传算法内在结合起来的算法RLGA,在遗传算法的框架下实现强化学习机制.从理论上分析了RLGA的收敛性,讨论了RLGA的时间和空间效率及其与基因空间分割的关系,通过实验分析了RLGA中基因空间分割的指导范围.实验结果表明,RLGA具有良好的全局收敛性能. RLGA,an algorithm which implements mechanism of reinforcement learning under the framework of genetic algorithm is described, by using gene space division the algorithm maps the gene space of genetic algorithm into the strategy spcaces of multi-agent. The convergence theorems for the algorithm are presented, and the lime and the space efficiency of the algorithm as well as the relation between them and the division granularity are discussed. The experimental results show that RLGA has well global convergence performance, and the further experiments provide the guide range of the size of gene space division in RLGA.
出处 《电子学报》 EI CAS CSCD 北大核心 2006年第5期856-860,866,共6页 Acta Electronica Sinica
基金 国家自然科学基金(No.60475026) 江苏省自然科学基金(No.BK2004079) 安徽省教育厅自然科学研究重点项目(No.2006KJ027A)
关键词 强化学习 遗传算法 收敛性 reinforcement learning genetic algorithm convergence
  • 相关文献

参考文献8

  • 1Nix A E,Vose M D.Modeling genetic algorithms with Markov chains[J].Annals Mathematics and Artificial Intelligence,1992,5(1):77-88.
  • 2Sutton R S,Butro A G.Reinforcement Learning:Introduction[M].Cambridge,MA:MIT Press,1998.
  • 3Holland J H.A mathematical framework for studying learning in classifier systems[J].Physica,1986,22D(1-3):307-317.
  • 4Dorigo M,Bersini H.A comparison of Q-learning and classifier systems[A].Proceedings of From Animals to Animats,Third International Conference on SIMULATION of Adaptive Behavior[C].MA:MIT Press,1994.248-255.
  • 5Qi D,Sun R.A multi-agent system integrating reinforcement learning,bidding and genetic algorithms[J].Web Intelligence and Agent Systems,2003,1(3-4):187-202.
  • 6Eriksson A,Capi G,Doya K.Evolution of metaparamters in reinforcement learning algorithm[A].Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems[C].Piscataway NJ:IEEE Press,2003.412-417.
  • 7Pettinger J E,Everson R M.Controlling genetic algorithms with reinforcement learning[A].Proceedings of the Genetic and Evolutionary Computation Conference[C].San Francisco,CA:Morgan Kaufmann,2002.692-692.
  • 8Watkins C J C H,Dayan P.Technical note:Q-learning[J].Machine Learning,1992,8(3-4):279-292.

同被引文献68

引证文献9

二级引证文献53

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部