期刊文献+

电拓扑状态预测有机磷酸酯类化合物的气相色谱保留指数 被引量:27

Prediction of Gas Chromatographic Retention Indices of Organophosphates by Electrotopological State Index
在线阅读 下载PDF
导出
摘要 以原子类型电拓扑状态指数(ETSI)有效表征35个有机磷酸酯类化合物(OP)的分子结构,应用基于预测的变量选择与模型化(VSMP)方法建立OP化合物在3种不同固定相上的气相色谱保留指数(RI)与分子结构(ETSI)的定量相关模型.结果表明,影响不同固定相上OP色谱保留的主要结构因素都是由7个ETSI描述子对应的子结构碎片,即:=CH2,≡C—,aaC—,=O,—O—,Cl和Br.其中子结构aaC—,=O和—O与OP化合物母体骨架密切相关,而=CH2,≡C—,—Cl和—Br反映支链或取代基的变化.通过多元线性回归法建立OP化合物在三个固定相上的定量结构-保留相关模型(QSRR)发现,各QSAR模型的估计相关系数均在0.99以上,LOO检验相关系数在0.98以上,表明模型具有良好估计能力与稳定性.应用28个OP训练集样本构建的QSRR模型预测外部7个检验集RI结果表明训练集模型具有良好预测能力. Electrotopological state index (ETSI) for atom types was used to describe the structures of 35 organophosphates and a quantitative linear relationship between the ETSI descriptors and gas chromatographic retention indices (RI) was developed using the variable selection and modeling based on prediction (VSMP). It was found that some main structural factors influencing the RI of organophosphates are 7 substructures such as =CH2, ≡C-, aaC- (where "a" refers to a chemical bond in the aromatic ring), =O, O, Cl and Br, which were related to the molecular skeleton of organophosphates, substituent groups on phenyl ring, and alkyls binding to the bond of P-O. Three best 7-variable models, with the calibrated correlation coefficient of r〉0.99 and the validated correlation coefficient of q〉0.98 for three stationary phases, were built by multiple linear regression, which shows a good estimation ability and stability of models. A prediction power for the external samples was validated by the model built from the training set with 28 organophosphates.
出处 《化学学报》 SCIE CAS CSCD 北大核心 2006年第10期1043-1050,共8页 Acta Chimica Sinica
基金 国家973计划(No.2003CB415002) 国家自然科学基金(No.20477018) 全国优秀博士学位论文作者基金(No.200355)资助项目
关键词 电拓扑指数 有机磷酸酯 定量结构-保留相关 基于预测的变量选择与模型化方法(VSMP) electrotopological state index organophosphate quantitative structure-retention relationship variable selection and modeling based on prediction
  • 相关文献

参考文献2

二级参考文献11

  • 1[1]Bradbury S P. Predicting modes of toxic action from chemical structure: An overview [J]. SAR QSAR Environ., 1994,2:89-104.
  • 2[2]Nirmalakhandan N, Speece R E. Structure-activity relationships[J]. Environ. Sci, Technol,, 1988,22(6):606-615.
  • 3[3]Kier L B, Hall L H. An electrotopological state index for atoms in molecules [J]. Pharmaceutical Res., 1990,7(8):801-807.
  • 4[4]Hall L H, Mohney B K, Kier L B. The electrotopological state:An atom index for QSAR [J]. Quant. Stract.-Act. Relat.,1991,10(1):43-51.
  • 5[5]Hall L H, Mohney B K, Kier I. B. The eleclrotopological state:Structure information at the atomic level for molecular graphs [J].J. Chem. Inf. Comput. Sci., 1991,31(1):76-82.
  • 6[6]Kier L B, Hall L H. An atom-centered index for QSAR [J].Advances Drug Res., 1992,22(1):1-38.
  • 7[7]Kier L B, Hall L H. Molecular structure description: The electrotopological state [M]. San Diego: Academic Press, 1999.
  • 8[8]Gough J D, Hall L H. Modeling the toxicity of amide herbicides using the electropological state [J]. Environ. Toxicol. Chem.,1999,18(5):1069-1075.
  • 9[9]南京大学环境科学系环境生物教研室环境生物实验技术与方法[M].南京南京大学出版社,1989.145-151.
  • 10[10]Hall L H, Kier L B. Electrotopological state indices for atom types: A novel combination of electronic, topological, and valence state information [J]. J. Chem, Inf. Comput. Sci.,1995.35(6):1039-1045.

共引文献14

同被引文献351

引证文献27

二级引证文献84

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部