摘要
用形式为x|x|非线性函数取代Coullet系统中的立方非线性函数得到变形Coullet系统。分析二系统的特性,发现变形Coullet系统与原Coullet混沌系统具有拓扑共轭关系。采用线性反馈方法实现了二个拓扑共轭异结构系统之间的混沌同步,根据Hurwitz稳定性判据,得到反馈控制增益k的理论值。设计了实现Coullet系统异结构线性反馈混沌同步的实验电路,并通过实验对理论分析进行验证,结果表明理论分析的正确性。
The modified Coullet system is gained by replacing its cube function with the x |x| function. The characteristic of two systems is analyzed and these are topologically conjugate but have different systems structure. Based on both systems are equivalent, chaos synchronization between Coullet and the modified Coullet are realized via linearly feedback control. Based on Hurwitz theorem, the threshold value of feedback control gain for synchronization of two systems is derived. The practical circuit is designed to realize chaos synchronization between the two systems and the experiment result verifies the conclusion.
出处
《系统工程与电子技术》
EI
CSCD
北大核心
2006年第4期591-593,598,共4页
Systems Engineering and Electronics
基金
国家自然科学基金(69934010)
教育部高校博士点基金(20030286013)
江苏省高校自然科学研究基金(05KJD120083)资助课题