期刊文献+

Coullet系统异结构线性反馈混沌同步 被引量:10

Synchronization between Coullet chaotic system and its modified system with linearly feedback control
在线阅读 下载PDF
导出
摘要 用形式为x|x|非线性函数取代Coullet系统中的立方非线性函数得到变形Coullet系统。分析二系统的特性,发现变形Coullet系统与原Coullet混沌系统具有拓扑共轭关系。采用线性反馈方法实现了二个拓扑共轭异结构系统之间的混沌同步,根据Hurwitz稳定性判据,得到反馈控制增益k的理论值。设计了实现Coullet系统异结构线性反馈混沌同步的实验电路,并通过实验对理论分析进行验证,结果表明理论分析的正确性。 The modified Coullet system is gained by replacing its cube function with the x |x| function. The characteristic of two systems is analyzed and these are topologically conjugate but have different systems structure. Based on both systems are equivalent, chaos synchronization between Coullet and the modified Coullet are realized via linearly feedback control. Based on Hurwitz theorem, the threshold value of feedback control gain for synchronization of two systems is derived. The practical circuit is designed to realize chaos synchronization between the two systems and the experiment result verifies the conclusion.
出处 《系统工程与电子技术》 EI CSCD 北大核心 2006年第4期591-593,598,共4页 Systems Engineering and Electronics
基金 国家自然科学基金(69934010) 教育部高校博士点基金(20030286013) 江苏省高校自然科学研究基金(05KJD120083)资助课题
关键词 混沌同步 线性反馈控制 Coullet系统 chaos synchronization linearly feedback control Coullet system
  • 相关文献

参考文献10

  • 1Wu C W,Chua L O.Synchronization in an array of linearly couple dynamical systems[J].IEEE Trans.Circuits Syst.,1995,42(8):430 -447.
  • 2Henon M A.Two-dimensional mapping with a strange attractor[J].Commun.Math.Phys,1976,50(2):69-77.
  • 3Genensio R,Tesi A.Harmonic balance methods for the analysis of czhaotic dynamics in nonlinear systems[J].Automatica,1992,28(3):531-548.
  • 4Sprott J C.Some simple chaotic flows[J].Phys.Rev.E,1994,50(2):R647-650.
  • 5Khibnik A I,Roose D,Chua L O.On periodic orbits and Homoclinic bifurcation in Chua's circuit with a smooth nonlinearity[J].Int.J.Bifurcation and Chaos,1993,3(2):363-384.
  • 6刘扬正,费树岷.Genesio-Tesi和Coullet混沌系统之间的非线性反馈同步[J].物理学报,2005,54(8):3486-3490. 被引量:25
  • 7刘扬正,费树岷,李平.变型蔡氏电路混沌同步的非线性反馈控制[J].系统工程与电子技术,2005,27(8):1448-1451. 被引量:14
  • 8King G P,Gaito S T.Bistable chaos.Ⅰ.Unfolding the cusp[J].Phys.Rev.A,1992,46(6):3092-3099.
  • 9Chua L O,Wu C W,Huang A,et al.A universal circuit for studying and generating chaos,part Ⅰ:routes to chaos[J].IEEE Trans.Circuits Syst.,1993,40(10):730-743.
  • 10Shil' nikov L P.Chua's circuits:Rigorous result and future problems[J].Int.J.Bifurcation and Chaos,1994,4(3):489-519.

二级参考文献19

  • 1丘水生.奇异吸引子的细胞模型及混沌存在定理的建立[J].华南理工大学学报(自然科学版),1996,24(6):137-140. 被引量:15
  • 2Pecora L M,Carroll L T L. Synchronization in chaotic circuits[J ].Phys. Rev. Lett. , 1990, 64(8) : 821 - 824.
  • 3Wu C W, Chua L O. Synchronization in an array of linearly couple dynamical systems[J]. IEEE Trans. on Circuits Syst. , 1995, 42(8) : 430- 447.
  • 4Kocarev L, Parlitz U, Brown R. Robust synchronization of chaotic systems[J]. Phys. Rev. E., 2000, 61(4): 3716-3720.
  • 5Chua L O, Itoh M, Koearev L, et al. Chaos synchronization in Chua' s circuits [J ]. J. of Circuits, Systems and Computers,1993, 3(1): 93-108.
  • 6Yin Y Z. Experimental demonstration of chaotic synchronization in the modified Chua's circuits[J]. Int. J Bifurcation and Chaos,1997, 7(6): 1401-1410.
  • 7Khibnik A I, Roose D, Chua L O. On periodic orbits and Homoclinic bifurcation in Chua' s circuit with a smooth nonlinearity[ J ].Int. J Bifurcation and Chaos, 1993, 3(2) : 363 - 384.
  • 8高金峰,罗先觉,马西奎,潘秀琴,王俊昆.控制与同步连续时间混沌系统的非线性反馈方法[J].物理学报,1999,48(9):1618-1627. 被引量:36
  • 9刘锋,穆肇骊,邱祖廉.混沌Arneodo系统的输出反馈同步[J].物理学报,1999,48(12):2191-2195. 被引量:13
  • 10蒋国平,王锁萍.蔡氏混沌电路的单向耦合同步研究[J].电子学报,2000,28(1):67-69. 被引量:15

共引文献34

同被引文献78

引证文献10

二级引证文献51

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部