期刊文献+

基于支持向量机的储粮害虫分类识别技术研究 被引量:17

Research of Grain Pests Detection and Classification Based on SVM
在线阅读 下载PDF
导出
摘要 介绍了采用三帧差分法实现谷物害虫图像恢复与提取的方法,利用图像的一阶灰度值直方图和图像的目标区域,自动提取静态储粮害虫图像的纹理等特征。针对于相对特征维数而言样本数很少的特点,提出利用多类SVM分类器的方法实现对储粮害虫的快速鉴定和分类。实验结果表明,相比传统的神经网络,SVM在有限样本情况下具有良好的泛化能力。 A method of using three image differences to restore and extract the pest images is introduced. With reference to the fist order gray histogram of pest images and their graphic target zones, a technique is provided to extract the texture eigenvalue. A multi-class support vector machine is proposed to implement the quick identification and classification of grain pests according to small amount samples compared to the dimensions. The test shows the better generalization ability of SVM than that of ANN under the conditions of limited training samples,
作者 甄彤 范艳峰
出处 《计算机工程》 EI CAS CSCD 北大核心 2006年第9期167-169,共3页 Computer Engineering
基金 国家"粮食丰产科技工程"基金资助项目(2004BA520A)
关键词 三帧差分法 纹理特征 分类 人工神经网络 SVM Three image difference Texture eigenvalue Classification ANN SVM
  • 相关文献

参考文献5

二级参考文献14

  • 1Hsu C.W., Lin C.J. A comparison of methods for multiclass support vector machines. IEEE Transactions on Neural Networks, 2002, 13(2): 415~425.
  • 2Weston J., Watkins C. Multi-class support vector machines. Department of Computer Science, Royal Holloway University of London Technical Report, SD-TR-98-04, 1998.
  • 3Kressel Ulrich. Pairwise classification and support vector machines. In: Schkopf B., Burges C.J.C., Smola A.J. eds. Advances in Kernel Methods--Support Vector Learning, Cambridge, MA: MIT Press, 1998, 255~268.
  • 4Platt J.C., Cristianini N., Shawe-Taylor J. Large margin DAG's for multiclass classification. Advances in Neural Information Processing Systems. Cambridge, MA: MIT Press, 2000, 12: 547~553.
  • 5Li Kun-Lun, Huang Hou-Kuan, Tian Sheng-Feng. A novel multi-class SVM classifier based on DDAG. In: Proceedings of IEEE ICMLC'02, Beijing, China, 2002, 3: 1203~1207.
  • 6Burges J.C. A tutorial on support vector machines for pattern recognition. Data Mining and Knowledge Discovery, 1998, 2(2): 121~167.
  • 7Vapnik V. Statistical Learning Theory. New York: Springer Verlag, 1998.
  • 8Corts C., Vapnik V. Support vector networks. Machine Learning, 1995, 20(3): 273~297.
  • 9李金宗.模式识别导论[M].高等教育出版社,2000.360-370.
  • 10Zayas I Y. Image Analysis for Texture Pattern Recognition of Wheats/Cereal Chem.,1986, 67(1):264-272.

共引文献2381

同被引文献270

引证文献17

二级引证文献177

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部