期刊文献+

一种基于支持向量机的含噪语音的清/浊/静音分类的新方法 被引量:12

A Method for Voiced/Unvoiced/Silence Classification of Speech with Noise Using SVM
在线阅读 下载PDF
导出
摘要 本文将支持向量机(SVM)方法应用于语音信号的清/浊/静音检测中,提出并验证了一种在各种信噪比等级下将语音信号有效地分为清音、浊音和静音三类信号的新型分类算法.首先,在高信噪比情况下,本文采用了G.729B VAD中的四个差分参数作为SVM分类器的输入特征参数,进行了静音分类的对比实验,得到了优于G.729B VAD和BP神经网络传统算法的实验结果,说明引入这种机器学习方法做语音分类是可行的,并分析讨论了在核函数不同的情况下支持向量机在实验中所表现出的性能.其次,又讨论了在低信噪比条件下,如何通过对含噪语音建立统计模型,提取对噪音免疫的统计特征参数,并给出了一种对时变背景噪声自适应的估计方法.最后,通过在不同噪音环境下的对比实验结果,验证了本文所提出的算法在中低信噪比情况下的分类性能要优于其他传统算法. A new method to voiced/unvoiced/silence of speech classification using Support Vector Machine (SVM) is proposed. This classifier can effectively classify speech frames into voiced frame, unvoiced frame and silence frame under various levels of signal noise ratio. Firstly,in high SNR, the VU/S classification is done by using the four difference characteristic parameters used in G. 729B VAD as SVM's input features. The comparison of experiment resuits shows that the proposed method outperforms other traditional methods (G. 729B VAD and BP network), which shows the SVM's classification method is available. And the performance of SVM for different kernel functions in the experiment was analyzed and discussed as well. Secondly, the paper also discusses the extraction of the statistical features which is immune to the background noise and the adaptive estimation method for the time-varying background noise in low SNR, which are analyzed by applying a statistical model. Lastly, the comparison experiment results in various noise environments under varying levels of SNR are given. According to the simulation results, the proposed method shows significantly better classification performances than the other traditional methods in middle and low SNR cases.
出处 《电子学报》 EI CAS CSCD 北大核心 2006年第4期605-611,共7页 Acta Electronica Sinica
基金 国家自然科学基金(No.60372063) 北京市自然科学基金(No.4042009) 北京市教委科技发展项目(KM200310005024)
关键词 支持向量机 统计学习 统计信号处理 模式识别 语音编码 support vector machine statistic learning statistical signal processing pattern recognition speech coding
  • 相关文献

参考文献14

  • 1B Atal, L Rabiner. A pattern recognition approach to voiced-unvoiced-silence classification with applications to speech recognition[ J]. IEEE Transactions on Acoustics, Speech and Signal Processing, 1976,24 ( 3 ) : 201 -212.
  • 2L Rabiner, M Sambur. Application of an LPC distance measure to the voiced-unvoiced-silence detection problem [ J ]. IEEE Transactions on Acoustics, Speech and Signal Processing, 1977,25 (4) : 338 - 343.
  • 3B Cox, L M Timothy. Nonparametric rank-order statistics applied to robust voiced-unvoiced-silence classification[ J]. IEEE Transactions on Acoustics, Speech and Signal Processing, 1980,28 (5) :550 - 561.
  • 4Y Qi, B R Hunt. Voiced-unvoiced-silence classification of speech using hybrid features and a network classifier[ J].IEEE Transactions on Speech and Audio Processing ,1993,1 (2) :250 -255.
  • 5R Ahn, W H Holmes. Voiced/unvoiced/silence classification of speech using 2-Stage neural networks with delayed decision input[ A ]. B Boashash, et al. Proc ISSPA 96 [ C ]. Brisbane, Australia: Queensland University of Technology, 1996.389 - 390.
  • 6VladimirNVapnik.统计学习理论的本质[M].北京:清华大学出版社,2000.96-107.
  • 7ITU-T Rec G. 729-1996 ANNEX B,A silence compression scheme for G.729 optimized for terminals conforming to Recommendation V. 70 [ S ].
  • 8B Scholkopf, C Burges, A Smola. Advances in Kernel Methods-Support Vector Learning [ M ]. USA: MIT Press, 1999.41 - 56.
  • 9Jongseo Sohn, Wonyong Sung. A voice activity detector employing soft decision based noise spectrum adaptation[ A]. Proc ICASSP'98 [ C ]. Seattle, Washington : IEEE,1998.365 - 368.
  • 10Jongseo Sohn, Nam Soo Kim, Wonyong Sung. A statistical model-based voice activity detection [J]. IEEE Signal Processing Letters, 1999,6 ( 1 ) : 1 - 3.

共引文献34

同被引文献124

引证文献12

二级引证文献36

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部