摘要
利用主元分析模型和小波变换模极大值法,提出了监测船舶机电设备性能变化的趋势提取方法。基于聚类思想,定义了奇异值分散性测度,估计了主元数;类似地,通过对复相关系数的聚类分析,确定了主元显著相关变量。算例证明了文中方法的有效性。
Using the principal component analysis (PCA) model and the wavelet modulus maxima (WMM) method, an approach on the trends extraction is presented to monitor the performance of marine mechanical and electrical equipment. The number of principal components (PCs) is estimated by using the Clustering-based method. The Principle-component-related Variables (PVs) are located similarly. The validity of the approach is confirmed by the calculation.
出处
《机电设备》
2006年第1期I0008-I0011,I0004,共5页
Mechanical and Electrical Equipment
关键词
PCA
聚类
小波
趋势分析
PCA
clustering
wavelet
trends extraction