期刊文献+

自适应小波阈值去噪方法 被引量:2

Adaptive Denoising by Soft-thresholding with Wavelets
在线阅读 下载PDF
导出
摘要 针对未知含噪信号的小波去噪理论,提出了一种新的阈值方程,并基于斯坦恩无偏估计(SURE)优化算法和阈值方程寻找最优门限值,以确保去噪后的信号是对未知原信号的最优估计。同时,注意到使用正交小波去噪,容易在信号奇异点处产生Gibbs振荡。为解决该问题,在信号分解和重构时使用了平稳小波变换算法。最后,应用以上方法与基于SURE的正交小波去噪方法对2种含噪信号进行去噪分析,结果令人满意。 In this paper, according to wavelet denoising theory of signal, a new thresholding function is presented. And based on Stein's Unbiased Risk Estimate (SURE) optimizing algorithm and thresholding functions, we can find optimal threshold which makes the denoising signal he optimal estimation of original signal. At the same time, because of the Gibbs shake on singular point by orthogonality wavelet denoising, we use stationary wavelet transform to decompose and reconstruct signal. At last,we apply our method and orthogonality wavelet denoising method based on SURE to denoise two noise signals. The result is satisfying.
出处 《现代电子技术》 2006年第8期58-61,共4页 Modern Electronics Technique
关键词 小波变换 SURE 自适应算法 信号去噪 wavelet transform SURE adaptive algorithm signal denoising
  • 相关文献

参考文献13

  • 1Albert Boggess, Francis J. Narcowich. A First Course in Wavelets with Fourier Analysis[M]. Publishing House of Electronics Industry, 2002.
  • 2Mallat S. A Theory for Multi - resolution Approximation:the Wavelet Approximation. IEEE Trans. PAMI 11(1989).674 - 693.
  • 3Mallat S, Hwang W L. Singularity Detection and Processing with Wavelets [J ]. IEEE Transaction on Information Theory, 1992,38(2) : 617 - 643.
  • 4Donoho D L. De - noising by Soft - thresholding [J]. IEEE Transactions on Information Theory, 1995,41(3) : 13 - 627.
  • 5Donoho D L. Adapting to Unknown Smoothness via Wavelet Shrinkage[J]. Journal of the American Statistical Association,1995,90:1200-1224.
  • 6Coifman R R, Donoho D L. Translation- invariant Denoising,Wavelets and Statistics[M]. New York: Springer - Vetlag,1995. 125 - 150.
  • 7Goodman T N T, Lee S L. Wavelets of Muhiplicity [J].Trans. of American Math Society, 1994,342(1) :307 - 324.
  • 8Charles C Stein. Estimation of the Mean of a Multivariate Normal Distribution [J]. Annals of Stattisties. 1981, 9(6):1135-1151.
  • 9李士心,刘鲁源,杨晔,陈刚.基于平稳小波变换的陀螺仪信号去噪方法[J].天津大学学报(自然科学与工程技术版),2003,36(2):165-168. 被引量:29
  • 10Li Shi Xin. Gyro Signal Denoising Using Stationary Wavelet Transform. Journal of Tianjin University, 2003,36 (2):165 - 168.

二级参考文献9

  • 1王楠,杜劲松.小波消噪在振动信号处理中的应用[J].仪器仪表学报,2001,22(z1):225-226. 被引量:13
  • 2郭秀中.惯导系统陀螺仪理论[M].北京:国防工业出版社,1996.4-5.
  • 3Delyon B, Juditsky A, Benveniste A. Accuracy Analysis for Wavelet Approximation [J]. IEEE Transactions on Neural Networks, 1995, 6 (2): 320-350.
  • 4Divid L, Donoho. Denoising by Soft -thresholding [J] .IEEE Transaction on information theory. 1995, 41 (3):609 -632.
  • 5刘贵忠 邸双亮.小波分析及其应用[M].西安:西安电子科技大学出版社,1997.37-72.
  • 6Lang M,Guo H. Noise reduction using an undecimated discrete wavelet transform[J].IEEE Signal Processing Letters,1996,3:613-627.
  • 7Nason G P, Silverman B W.Stationary wavelet transform and some statistical applications[D].Tech Rep,Dept of Math,Univ of Bristol,UK,1995.
  • 8谢荣生,孙枫,郝燕玲,杨树国.基于小波分析的船用捷联陀螺信号滤波方法[J].哈尔滨工程大学学报,2001,22(2):24-26. 被引量:18
  • 9刘鲁源,李士心,杨晔,汤巍.双正交小波在陀螺信号去噪中的应用[J].信号处理,2002,18(4):386-388. 被引量:5

共引文献63

同被引文献3

引证文献2

二级引证文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部