期刊文献+

基于支持向量机SVR的黄河凌汛预报方法 被引量:25

Yellow River ice flood prediction based on SVR
在线阅读 下载PDF
导出
摘要 黄河内蒙段每年都有不同程度的凌汛灾害发生,准确及时的凌汛预报能够为防汛工作提供决策支持.但至今尚无一种令人满意的预测模型,为此提出一种基于支持向量机回归(SVR)的凌汛预报模型.SVR是基于统计学习理论的一种机器学习(m ach ine learn ing)方法,具有严格的理论基础,尤其是在小样本情况下,它能够利用有限的样本信息获得最好的学习效果和泛化能力.实例分析结果表明,基于SVR的凌汛预报方法具有训练速度快、泛化能力强的特点,对黄河内蒙段凌汛期封河历时预测比较准确,这对黄河凌汛防范和水资源的可持续发展具有重要意义. Ice flood occurs almost every year in Inner Mongolia reach of Yellow River, so ice flood prediction has become an important tool to support engineers to deal with ice flood problem. However, there is still not a satisfied model to deal with this problem until now. So an ice flood prediction model based on support vector machine regression (SVR) model is proposed which is a kind of machine learning model based on statistics learning theory. Especially, SVR does well in dealing with small stylebooks and can acquire good generalization ability with limited information (stylebooks). The case study shows that SVR's training speed and generalization ability are better than those of ANN prediction, which is meaningful to the ice flood prevention and water resources' sustainable development of Yellow River.
出处 《大连理工大学学报》 EI CAS CSCD 北大核心 2006年第2期272-275,共4页 Journal of Dalian University of Technology
基金 国家自然科学基金资助项目(59179376)
关键词 支持向量机 黄河凌汛 预测 support vector machine ice flood of Yellow River prediction
  • 相关文献

参考文献10

  • 1陈守煜,冀鸿兰.冰凌预报模糊优选神经网络BP方法[J].水利学报,2004,35(6):114-118. 被引量:65
  • 2CHEN Shou-yu,JI Hong-lan.Fuzzy optimization neural network approach for ice forecast in the Inner Mongolia Reach of Yellow River[J].Hydrolog Sci J,2005,50(2):319-329.
  • 3VLADIMIR N,VAPNIK V.The Nature of Statistical Learning Theory[M].Berlin:Springer,1995.
  • 4CORTES C,VAPNIK V.Support-vector networks[J].Machine Learning,1995,20(3):273-297.
  • 5GOLUB T R,SLONIM D K,TAMAYO P,et al.Molecular classification of cancer:class discovery and class prediction by gene expression monitoring[J].Science,1999,286(15):531-537.
  • 6JOACHIMS T.Learning to classify text using support vector machines[D]].Netherland:Kluwer,2002.
  • 7VapnikV.统计学习理论的本质[M].北京:清华大学出版社,2000..
  • 8KEERTHI S S,LIN C J.Asymptotic behaviors of support vector machines with Gaussian kernel[J].Neural Comput,2003,15(7):1667-1689.
  • 9LIN H T,LIN C J.A study on sigmoid kernels for SVM and the training of non-PSD kernels by SMO-type methods[R].Taipei:Department of Computer Science and Information Engineering,National Taiwan University,2003.
  • 10李建民,张钹,林福宗.支持向量机的训练算法[J].清华大学学报(自然科学版),2003,43(1):120-124. 被引量:47

二级参考文献31

  • 1SL250-2000.水文情报预报规范[S].[S].,..
  • 2Shen H T. Dynamic transport of river ice [J]. Journal of Hydraulic Research, 1990, 28 (6): 659 - 671.
  • 3Shen H T. Under cover transport and accumulation of frazil granules [J]. Journal of Hydraulic Engineering, 1995,121 (2): 184-195.
  • 4VapnikV.统计学习理论的本质[M].北京:清华大学出版社,2000..
  • 5黄河水利委员会水文局.流冰、封河、开河成因及其预报模型研究[M].郑州:黄河水利出版社,2002..
  • 6Osuna E,Freund R,Girosi F. Support Vector Machines: Training and Application [R]. CBCL Paper #144 / AI Memo #1602,Cambridge,MA: Massachusetts Institute of Technology,AI Lab,1997.
  • 7Osuna E,Freund R,Girosi F. An improved training algorithm for support vector machines [A]. Principe J,Gile L,Morgan N,et al. Proceedings of the 1997 IEEE Workshop on Neural Networks for Signal Processing [C]. IEEE,1997. 276-285.
  • 8Joachims T. Making large-scale support vector machine learning practical [A]. Scholkopf B,Burges C,Smola A. Advances in Kernel Methods - Support Vector Learning [C]. Cambridge,MA: MIT Press,1999. 169-184.
  • 9LIN Chihjen. On the convergence of the decomposition method for support vector machines [J]. IEEE Transactions on Neural Networks,2001,12(6): 1288-1298.
  • 10Laskov P. An improved decomposition algorithm for regression support vector machines [A]. Solla S,Leen T,Muller K-R. Advances in Neural Information Processing Systems 12 [C]. Cambridge,MA: MIT Press,2000. 484-490.

共引文献136

同被引文献276

引证文献25

二级引证文献158

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部