摘要
本文给出实广义正定矩阵概念的新推广及其基本性质,讨论它及常见几种定义下广义正定矩阵的代数结构,得到非对称正定矩阵乘积的一个新刻画,并利用所获广义正定矩阵的性质,拓广了Minkowski,OstrowskiTaussky等矩阵不等式的取值范围.
In this paper, we give the new extiension of the concept of real extended positive definite matrices and its basic properties, discuss the algebraic structure of extended positive definite matrices under the concept and some usual definitions, obtain a new depiction of unsymmetrical positive definite matrices product, and extend the given forms of Minkowski, Ostrowski-Taussky matric inequalities further by using the obtained property of extended positive definite matrices.
出处
《数学杂志》
CSCD
北大核心
2006年第2期181-184,共4页
Journal of Mathematics
关键词
广义正定矩阵
矩阵乘积
不等式
generalized positive matrices
matrices product
inequality