期刊文献+

λ-超凸空间中的一个选择定理及其应用 被引量:2

A SELECTION THEOREM IN λ-HYPERCONVEX SPACES AND ITS APPLICATIONS
在线阅读 下载PDF
导出
摘要 本文研究度量空间中取非空λ外超凸值的集值映象的选择问题.利用Zorn引理,得到了一个选择定理.作为应用,得到了一个不动点定理,并且证明了有界λ超凸空间中1λLipschitzian集值映象的不动点集为λ超凸集. The purpose of this paper is to study the selection problem of the set-valued mapping with λ- external hyperconvex values in metric spaces. By using Zorn Lemma, a new selection theorcm is obtained, and as its application, a new fixed point theorem is obtained. In addition, we prove that the set of fixed 1 point of the 1/λ-Lipschitzian set-valued mapping is a λ- hyperconvex set in bounded λ- hyperconvcx space.
出处 《数学杂志》 CSCD 北大核心 2006年第1期109-112,共4页 Journal of Mathematics
基金 云南省教育厅资助项目(02ZY071) 云南师范大学青年基金资助项目
关键词 λ-超凸度量空间 λ-外超凸集合 λ—Lipschitzian选择 λ—Lipschitzian保核收缩映象 λ- hyperconvex metric space λ- external hy perconvex set λ- Lipschitzian selection A-Lipschitzian retraction mapping
  • 相关文献

参考文献9

  • 1Aronszajn N.,Panitchpakdi P..Extensions of uniformly continuous transformations and hyperconvex metric spaces [J].Pacific J.Math,1956,6:405-439.
  • 2Lacey J.L..The Isometric Theorem of Classical Banach Spaces [M].Berlin-Heidelberg-New York:Springer Verlag,1974.
  • 3Sine R.C..On nonlinear contractions in sup norm spaces [J].Nonlinear Anal.,1979,3:885-890.
  • 4Sordi P..Existene of fixed point of nonexpansive mappings in certain Banach lattices [J].Proc.Amer.Math Soc.,1979,73:25-29.
  • 5Ray W.O..R.C.Nonexpansive mappings with precompact orbits [M].Fixed Point Theory,Lecture Notes in Math,New York:Springer,1981,886.
  • 6Khamsi M.A.,Kaust H.,Nguyen N.T.,O'Neill M.D..Lambda-hyperconvexity in metric spaces[J].Nonlinear Anal.,2001,43:21-31.
  • 7Sine R.C..Hyperconvexity and nonexpansive multifunctions [J].Trans.Amer.Math Soc.,1989,315:755-767.
  • 8Khamsi M.A..Kirk W.A.,Yanez C.M..Fixed point and selection theorems in hyperconvex spaces [J].Proc.Amer.Math Soc.,2000,128:3275-3283.
  • 9Sine R.C..Hyperconvexity and approximate fixed point [J].Nonlinear Anal.,1989,13:863-869.

同被引文献34

引证文献2

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部