期刊文献+

基于支持向量机的软测量方法及其在生化过程中的应用 被引量:28

Soft Sensor Modeling Based on Support Vector Machines and Its Applications to Fermentation Process
在线阅读 下载PDF
导出
摘要 针对所有样本点均出现在最小二乘支持向量机模型中的缺陷,提出了一种改进的最小二乘支持向量机回归方法。根据样本点间欧氏距离的大小,去除原变量空间中大部分的样本点,从而获得回归模型的“稀疏”特性,大大简化模型复杂程度。同时,将这一方法应用于生物发酵过程,建立青霉素发酵过程中产物浓度的软测量模型,实现青霉素浓度的在线预估。实验研究结果表明,所提方法为生物发酵过程中难于在线测量质量参数的实时监测提供了一个有效的手段。 A regression method is proposed to improve the LS-SVM (Least Square-Support Vector Machine) model. The sparseness of LS-SVM is thus obtained from the regression model to decrease greatly the computation quantity by way of removing most of the original sample points in accordance with their Euclidian distances. The proposed method has been applied to the fermentation process. A soft sensor model to develop a soft sensor so as to estimate the product's concentration on line in penicillin fermentation process. Testing results showed that the proposed procedure can provide a new useful approach to the real time monitoring of quality variables which are hard to be measured on-line in fermentation processes.
出处 《仪器仪表学报》 EI CAS CSCD 北大核心 2006年第3期241-244,271,共5页 Chinese Journal of Scientific Instrument
基金 国家自然科学基金(60374003) 973计划子课题(2002CB312200) 教育部暨辽宁省流程工业综合自动化重点实验室开放课题基金(PAL200511)资助项目
关键词 软测量 最小二乘支持向量机 生物发酵 青霉素浓度 Soft sensing Least square-support vector machine Fermentation process Penicillin concentration
  • 相关文献

参考文献7

  • 1MEJDELL T, SKOGESTAD S. Output estimation using multiple secondary measurements:high-purity distillation[J]. Process Systems Engineering, 1993,9(10):1641-1653.
  • 2YANG S H, WANG X Z,MCGREAVY C, et al.Soft sensor based predictive control of industrial fluid catalytic cracking processes[J]. Institution of Chemical Engineers Trans. IchemE, 1998, 76(5):499-508.
  • 3常玉清,王小刚,王福利.PCA-DRBFN模型在精馏塔精苯干点估计中的应用[J].东北大学学报(自然科学版),2004,25(2):103-105. 被引量:6
  • 4CORTES C,VAPNIK V. Support-vector networks[J]. Machine Learning, 1995, 20(2) :273-297.
  • 5VAPNIK V N. The nature of statistical learningtheory [M]. 1st ed. New York: Springer-Verlag,1995.
  • 6张学工.关于统计学习理论与支持向量机[J].自动化学报,2000,26(1):32-42. 被引量:2311
  • 7YAN WEIWU,SHAO HUIHE, WANG XIAOFAN.Soft sensing modeling based on support vector machine and Bayesian model selection[J].

二级参考文献11

  • 1易灵芝,李卫平.化工生产过程中浓度类参数的软测量方法[J].兵工自动化,2000,19(4):40-42. 被引量:1
  • 2Mejdell T, Skogestad S. Output estimation using multiple secondary measurements: high-purity distillation[J]. Process Systems Engineering, 1993,9(10):1641-1653.
  • 3Yang S H, WANG X Z, Mcgreavy C, et al. Soft sensor based predictive control of industrial fluid catalytic cracking processes[J]. Institution of Chemical Engineers Trans Ichem E, 1998,76(5):499-508.
  • 4Casali A, Vallebuona G, Bustos M, et al. A soft-sensor for solids concentration in hydrocyclones[J]. Minerals Engineering, 1998,11(4):375-383
  • 5Dong D, McAvoy T J. Nonlinear principal component analysis-based on principal curves and neural networks[J]. Computer Chemical Engineer, 1996,20(65):245-257.
  • 6Georger H. Principal component analysis[M]. Newbury Park, Indian New Delhi: The Publishers of Professional Social Science, 1989.79-83.
  • 7王慧文.偏最小二乘回归方法及其应用[M].北京:国防工业出版社,1999.157-159.
  • 8Martin G D. Consider soft sensors[J]. Chemical Engineering Process, 1997,7:66-70.
  • 9Wang X D, Luo R F, Shao H H. Designing a soft sensor model for a distillation column with the fuzzy distributed radial basis function neural network[A]. Proc IEEE 35th Conf[C]. Kobe:The Publishers of Society of Instrument and Control Engineers, 1999.1714-
  • 10卢增祥,李衍达.交互支持向量机学习算法及其应用[J].清华大学学报(自然科学版),1999,39(7):93-97. 被引量:42

共引文献2313

同被引文献316

引证文献28

二级引证文献285

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部