期刊文献+

基于Chebyshev基函数模糊神经网络的快速辨识方法 被引量:5

Fast Identification Method of Fuzzy Neural Networks Based on Chebyshev Basis Function
在线阅读 下载PDF
导出
摘要 神经网络的非线性逼近能力的研究是神经网络成为辨识模型的理论基础。首先研究了基于正交多项式函数的神经网络逼近理论和方法,并在此基础上证明了新型Chebyshev神经网络具有良好的非线性并研究了它的全局最优逼近性质。然后提出了一种用于复杂非线性系统辨识的基于Chebyshev基函数的模糊神经网络模型和学习算法。该模型以Chebyshev基函数为隶属函数,规则后件采用输入变量的线性函数,无需调整隶属函数的参数,只是采用BP学习算法学习后件参数,因而大大减少了模型算法的计算量,学习算法简单,加快了学习收敛速度,而且不使网络结构复杂,设计简单。仿真结果表明所提模型和方法的有效性。 The theory of identification model based on neural networks(NN) is to research into its capability of nonlinear approximation. Universal approximation capability of orthogonal polynomials based on NN was proposed, and with which nonlinear approximation and global optimization of this new type Chebyshev NN were proved. Then fuzzy neural networks model and learning algorithm based on Chebyshev basis functions to be used as its membership functions were proposed for nonlinear system identification. As no parameters to be adjusted in the Chebyshev membership functions and just adopting BP algorithm studying parameters of fuzzy rules, the computing greatly reduced and the simple model structure, the fast convergence and the high precision of identification were obtained. The simulation results show their effectiveness of the proposed model and method.
作者 江善和 张杰
出处 《系统仿真学报》 EI CAS CSCD 北大核心 2006年第3期590-593,共4页 Journal of System Simulation
基金 安徽省高等学校杰出青年教师资助课题(2005jq1119)
关键词 神经网络 函数逼近 Chebyshev基函数 模糊神经网络 非线性系统辨识 neural networks(NN) function approximation Chebyshev basis function fuzzy neural networks nonlinear system identification
  • 相关文献

参考文献9

  • 1李明国,郁文贤.神经网络的函数逼近理论[J].国防科技大学学报,1998,20(4):70-76. 被引量:21
  • 2Cybenko G. Contiouous Value Neural Networks with Two Hidden Layers are Sufficient[J]. Math. Contr. Signal & Sys(S0018-8646),1989, (4): 330-341.
  • 3Funahashi K. On the Approximation Relalization of Continuous Mappings by Neural Networks[J]. Neural Networks(S0893-6080),1989, (2): 183-192.
  • 4J Buckley, Yoichi Hayashi . Neual Nets can be universal approximators for fuzzy functions[C]//IEEE int Conf NN, 1997:2347-2349.
  • 5Thomas Feuring, Wolfram-M Lippe. The fuzzy neural networks approximation[J]. Fuzzy Sets and Systems(S0165-0114), 1999, 10(2):227-236.
  • 6A Namatame, N Ueda. Patterm Classification with Chebyshev neural networks[J]. Int JNN(S1045-9227), 1992, 20(3):23-31.
  • 7Tsu-Tian Lee, Jin-Tsong Jeng. The Chebyshev-Polynomials-Based Unified Model Neural Networks for function Approximation[J]. IEEE Trans SMC(S1083-4427), 1998, 28(6):925-935.
  • 8T J Rivlin. Chebyshev polynomials form approximation theory to algebra and number theory[M]. New York:Wiley, 1990.
  • 9邹阿金,沈建中.傅立叶神经网络建模研究[J].湘潭大学自然科学学报,2001,23(2):23-26. 被引量:7

二级参考文献11

  • 1沈清.神经网络应用技术[M].北京:国防科技大学出版社,1995,4..
  • 2Chen Tianping,IEEE Trans NN,1995年
  • 3贡三元,VLSI阵列处理,1993年
  • 4Zhang Qinghua,IEEE Trans NN,1992年,3卷,889页
  • 5Wan E,IEEE Trans NN,1990年,1卷,303页
  • 6徐利治,函数逼近的理论与方法,1983年
  • 7洛伦茨,函数逼近论,1981年
  • 8沈清,神经网络应用技术,1995年,4页
  • 9焦李成,神经网络的应用与实现,1993年
  • 10Chen S,IEEE Trans Network,1991年,2卷,2期,302页

共引文献25

同被引文献39

引证文献5

二级引证文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部