期刊文献+

利用自适应校正设计的同步发电机神经控制器

Adaptive Critic Neurocontroller of a Hydrogenerator
原文传递
导出
摘要 电力系统是大规模非线性系统,其不确定性、快速动态等特性一直是稳定控制中难以解决的问题。神经网络控制由于具有自组织性、自适应性、容错性等性能,近年来在控制领域取得了很大的发展。文中介绍了一种新型神经控制器,该控制器应用自适应校正设计的原理,选用基于控制网络的启发式动态规划(Action-DependantHeuristicDynamicProgramming),设计中利用控制网络与校正网络交替训练的方法进行控制器的优化,具有结构简单,不依赖于受控系统的优点,并且能够实现在线学习。以单机无穷大系统为例,在Matlab/Simulink环境中对系统不同运行方式进行仿真,将该神经控制器同传统控制器进行对比,结果显示前者能够对系统振荡进行更好的阻尼,并且对不同工况保持稳定一致的控制效果,体现了很强的鲁棒性。 Power systems containing synchronous machines are large-scale dynamic systems. The uncertainties and nonlinearities associated with such a system are the most challenging problems in power system stability control. Artificial neural networks offer a solution to this problem due to their advantages, such as self-organization, self-adaptivity and fault tolerance. This paper introduces a novel nonlinear optimal neuro-controUer which is based on adaptive critic design and uses the structure of action-dependant heuristic dynamic programming(ADHDP) . The principle of ADHDP is presented. An action network and a critic network are set up in such a way that they basically learn from interactions based on local measurement to optimize the neurocontroller. The ADHDP neurocontroUer has a simple framework and is independent from the system model. A simulation of a single machine infinite bus system is carry out using Matlab/Simulink. The simulation results show that the ADHDP neuro-controUer is superior to the conventional ones at different operation conditions and highly robust.
出处 《现代电力》 2005年第4期7-11,共5页 Modern Electric Power
基金 国家自然科学基金重点资助项目(50323002)
关键词 电力系统 自适应校正设计 启发式动态规划 人工神经网络 动态稳定 power system adaptive critic design heuristic dynamic programming artificial neural network dynamic stability
  • 相关文献

参考文献7

  • 1Widrow B, Gupta N, Maitra S. Punish/reword:Learning with a Critic in Adaptive Threshold Systems[J]. IEEE Trans. on System, Man and Cybernetics, 1973. 455-465.
  • 2Prokhorov D V, Wunsch D C. Adaptive Critic Designs [J] . IEEE Trans. on Neural Networks,1997, 8(5): 997-1007.
  • 3Venayagarnoorthy G K, Harley R G, Wunsch D C.Comparison of Heuristic Dynamic Programming and Dual Heuristic Programming Adaptive Critics for Neurocontrol of a Turbogenerator [J] . IEEE Trans. on Neural Network, 2002, 13(3): 764-733.
  • 4Venayagamoorthy G K, Harley R G, Wunsch D C.Dual Heuristic Programming Excitation Neurocontrol for Generators in a Multimachine Power System [J] .IEEE Trans. on Industry Applications, 2003,39(2):382-393.
  • 5Mohagheghi S,Park J W, Harley R G. Adaptive Critic Design Based Neurocontroller for a STATCOM Connected to a Power System [C] . Industry Applications Conference, 2003. 38th IAS Annual Meeting.
  • 6HaganMT DemuthHB.Neural network design[M].北京:机械工业出版社,2002..
  • 7Si J, Wang Y. On-Line Learning Control by Association and Reinforcement [J] . IEEE Trans. on Neural Networks, 2001, 12(2): 264-276.

共引文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部