期刊文献+

力觉临场感系统中操作环境动力学的小波神经网络模型 被引量:2

Research on the Dynamic Model of Operating Environment in Force Telepresence System
在线阅读 下载PDF
导出
摘要 在力觉临场感系统中机器人操作环境经常是非线性的和未知的。为使本地操作者了解环境特性,需对操作环境进行建模。为此,进一步研究力觉临场感系统中机器人操作环境动力学模型,提出一种新的基于小波神经网络的环境非线性动力学模型的建立方法,分析网络的拓扑结构,给出网络参数训练和初始化方法。采用引入动量项的最速下降法训练网络权值、尺度因子和平移因子,将小波网络参数的初始化与小波类型、小波时频参数和学习样本等联系起来。结果表明,采用小波神经网络的力觉临场感系统中操作环境模型优于同等规模的BP网络,具有训练方法收敛速度更快、非线性逼近能力更强及建模精度更高等优点。 The operating environment in force telepresence system is often nonlinear and unknown. In order to enable local operator to sense the environment, it is necessary to building model. For this reason, the dynamic model of operating environment is further researched and a kind of new building method of dynamic model of operating environment in force telepresence system based on wavelet neural network (WNN) is presented. Geometrical structure of the network is analyzed and the methods of network parameters training and initialization are given. The weights of network ,scale factor and displacement factor are studied by the steepest descent method, and the network parameters initialization integrates with the wavelet type, time frequency parameters of wavelet and the training samples. The results show that the proposed wavelet neural network provides better approximation ability and higher precision and faster training speed than the BP neural network when used in building model of operating environment in force telepresence system.
出处 《仪器仪表学报》 EI CAS CSCD 北大核心 2006年第1期14-18,共5页 Chinese Journal of Scientific Instrument
基金 江苏省高等学校自然科学基金(04KJD140033)资助项目。
关键词 机器人 力觉临场感 操作环境 小波神经网络 建模 Robot Force telepresence Operating environment Wavelet neural network Modeling
  • 相关文献

参考文献13

  • 1Yokokohji Y, Yoshikawa T. Bilateral control of master-slave manipulators for ideal kinesthetic coupling-formulation and experiment [J]. IEEE Transactions on Robotics and Automation, 1994,10(4):605-620.
  • 2Zheng Y F, Yuka Fan. Robot force sensor interacting with environment [J]. IEEE Transactions on Robotics and Automation, 1991, 7(1):156-164.
  • 3Paul R P. Problems and research issues associated with the hybrid control of force and displacement [J].IEEE International Conference on Robot and Automation,1987:1966-1971.
  • 4Raju G J, Sheridan T B. Design issues in 2-port network models of bilateral remote manipulation[J].IEEE International Conference on Robot and Automation, 1989:1316-1321.
  • 5黄惟一,宋爱国.力觉临场感遥控作业系统的研究进展[J].东南大学学报(自然科学版),1995,25(4):112-119. 被引量:13
  • 6陈俊杰,黄惟一,宋爱国.基于虚拟现实的临场感遥控作业系统的研究动向[J].机器人,2000,22(6):514-518. 被引量:12
  • 7Burdea G C. Invited review: the synergy between virtual reality and robotics[J]. IEEE Transactions on Robotics and Automation, 1999, 15(3):400 410.
  • 8杨福生.小波变换的工程分析与应用[M].北京:科学出版社,2000..
  • 9Juditsky A, Hjalmarson H, Benveniste A, et al. Nonlinear blank-box modeling in system identification:a unified overview [J]. Automatic,1995,31(12):1691-1724.
  • 10许慧,申东日,陈义俊.一种用于非线性函数逼近的小波神经网络[J].自动化与仪器仪表,2003(6):4-6. 被引量:9

二级参考文献25

  • 1张邦礼,李银国,曹长修.小波神经网络的构造及其算法的鲁棒性分析[J].重庆大学学报(自然科学版),1995,18(6):88-95. 被引量:22
  • 2黄惟一,宋爱国.力觉临场感遥控作业系统的研究进展[J].东南大学学报(自然科学版),1995,25(4):112-119. 被引量:13
  • 3张庆,金瓯.力觉临场感系统的工作模式与操作者环节研究[J].机器人,1996,18(4):243-247. 被引量:1
  • 4杨福生.小波变换的工程分析与应用[M].北京:科学出版社,2000..
  • 5Zlumg Qinglaua, Bem, eniste A. Wavelet Networks. IEEK Trans on Neural Networks. 1992.3(6) : 889 - 898.
  • 6Juditsky A , Hjalmmson H, Benveniste A, et al. Nonlinear blankbox modeling in system identification: A unified overview [J]. Automatica, 1995.31(12) : 1691 - 1724.
  • 7Szu H, Telfer B and Kadambi S. Neural network adaptive wavelets for signal representation and classification [ J ] Optical Engineering.1992.36(9) : 1907 - 1916.
  • 8Ryotaro Kamimura, Shobechiro Nokanishi. Hidden infommtion maximization for feature deature detection and rule discovery, Network:computation in neural systeam. 1995. (6) :577 - 620.
  • 9Ryotaro Kamimura. Minimum entropy methods in neural network:competition ang selective responses by entropy minimization, IEEK International Joint Confermce of Neural Network. 1993:219 - 225.
  • 10团体著者,1992年

共引文献234

同被引文献28

  • 1罗杨宇,王党校,张玉茹.单自由度力觉交互系统建模与分析[J].北京航空航天大学学报,2004,30(6):539-542. 被引量:2
  • 2胡海鹰,李家炜,王滨,王捷,刘宏.虚拟现实技术在机器人臂/灵巧手遥操作中的应用[J].系统仿真学报,2004,16(10):2305-2308. 被引量:9
  • 3戴先中,殷铭,王勤.传感器动态补偿的神经网络逆系统方法[J].仪器仪表学报,2004,25(5):593-596. 被引量:26
  • 4汤晓君,刘君华.交叉敏感情况下多传感器系统的动态特性研究[J].中国科学(E辑),2005,35(1):85-105. 被引量:10
  • 5Dave Shreiner, Mason Woo, Jackie Neider, et al. OpenGL编程指南[M].第4版.北京:人民邮电出版社,2005.
  • 6HEWITT G F. Measurement for Two-Phase Flow Parameters [M]. London: Academic Press, 1978.
  • 7ZHANG Y, LIUJ H, ZHANG Y H, etal.. Cross sensitivity reduction of gas sensors using genetic al- gorithm neural network[J]. Optical Engineering, 2002,41(3) :615-625.
  • 8TUNCER E, SERDYUK Y V, GUBANSKI S M. Dielectric mixtures: electrical properties and model- ing [J]. IEEE Transactions on Dielectrics and E- lectrical Insulation, 2002,9 (5) : 809- 828.
  • 9MOHAMED A M O, ELAMAL M, ZEKRI A Y. Effect of salinity and temperature on water cut de- termination in oil reservoirs [J]. Journal of Petro- leum Science and Engineering, 2003, 40 (3-4) : 177-188.
  • 10AL-OTAIBI M B, ELKAMEL A, NASSEHI V, et al.. A computational intelligence based ap- proach for the analysis and optimization of a crude oil desalting and dehydration process[J].Energy & Fuels, 2005,19(6):2526-2534.

引证文献2

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部