期刊文献+

基于时延估计波束形成预处理的实时语音盲信号分离研究 被引量:3

On Real-time Speech Blind Signal Separation Based on Time Delay Estimation and Beamforming
在线阅读 下载PDF
导出
摘要 针对现有盲信号分离算法,在真实环境下性能会降低及计算量大而难以实时处理的局限性,提出一种将基于时延估计的波束形成与一种简单的去相关盲分离算法相结合的分离方法.在波束形成中,首先用互功率谱相位法对信号源到达传感器阵列的相对时延进行估计,然后进行延时对消,在此基础上再进行盲信号分离,并将该去相关盲分离算法推广到频域进一步降低计算复杂度.仿真实验表明,该方法简单可行并使得分离效果显著改善. Authors have addressed the problem of speech blind signal separation (BSS) in real-time by using a new approach that combines the beamforming and a decorrelation algorithm for BSS. In the stage of beamforming, time delay estimation and time delay compensation are performed through the Cross-power Spectrum Phase method. Furthermore, a conventional decorrelation algorithm is used to separate the signals. We validate the simplicity of the method and reveal that the signal separation performance of the proposed method is superior to that of the conventional decorrelation-based BSS method through the experiments of simulation.
出处 《四川大学学报(自然科学版)》 CAS CSCD 北大核心 2006年第1期99-103,共5页 Journal of Sichuan University(Natural Science Edition)
基金 国家自然科学基金(60472096)
关键词 盲信号分离 波束形成 互功率谱相位 时延估计 blind signal separation beamforming ,cross-power spectrum phase time delay estimation
  • 相关文献

参考文献9

  • 1Ali Mansour,Allan Kardec Barros,Noboru Ohnishi.Blind separation of sources:Methods,Assumptions and Applications [J].IEICE Trans.Fundamentals,2000,E83-A(8) :1498 - 1512.
  • 2Parra L,Spence C.Convolutive blind source separation of non-stationary sources[J].IEEE Trans.Speech and Audio Processing,2000,8 (3):320 - 327.
  • 3Wolf Baumann,Bert-Uwe Kohler,Dorothea Kolossa,et al.Real time separation of convolutive mixtures[OL].In ICA,2001.
  • 4Saruwatari H,Kurita S,Takeda K.Blind source separation combining frequency-domain ICA and beamforming[OL].Proc ICASSP2001,2001.
  • 5Omologo M,Svaizer P.Use of the Crosspower-Spectrum Phase in acoustic event location[J].IEEE Trans.Speech and Audio Processing,1997,5(3):288-292.
  • 6马晓红,陆晓燕,殷福亮.改进的互功率谱相位时延估计方法[J].电子与信息学报,2004,26(1):53-59. 被引量:31
  • 7Gerven S V,Compernolle D V.Signal separation by symmetric adaptive decorrelation:stability,convergence,and uniqueness[J].IEEE Trans.Signal Processing,1995,43(7):1602 - 1612.
  • 8西蒙 赫金 郑宝玉译.自适应滤波器原理(第四版)[M].北京:电子工业出版社,2003..
  • 9何培宇,殷斌,P.C.W.Sommen.一种有效的语音盲信号分离简化混合模型[J].电子学报,2002,30(10):1438-1440. 被引量:15

二级参考文献14

  • 1[1]Wang H, Chu P. Voice source localization for automatic camera pointing system in videoconferencing. ICASSP'97, Munich, Germany, 1997: 187-190.
  • 2[2]Brandstein M S. A practical methodology for speech source localization with microphone arrays.Computer, Speech, and Language, 1997, 11(2): 91-126.
  • 3[3]Brandstein M S. A framework for speech source localization using sensor arrays. [Ph.D Dissertation], Brown University, 1995.
  • 4[4]Silverman H F, Kirtman S E. A two-stage algorithm for determining talker location from linear microphone array data. Computer, Speech, and Language, 1992, 6(2): 129-152.
  • 5[5]Omologo M, Svaizer P. Acoustic event localization using a crosspower spectrum phase based technique. ICASSP'94, Adelaide, South Australia, 1994: 273-276.
  • 6[6]Omologo M, Svaizer P. Acoustic source location in noisy and reverberant environment using CSP analysis. ICASSP'96, Atlanta, Georgia, USA, 1996: 921-924.
  • 7[7]Allen J B, Berkley D A. Image method for efficiently simulating small room acoustics. Journal of Acoustical Society of America, 1979, 65(4): 943-950.
  • 8[8]Omologo M, Svaizer P. Use of the cross-power-spectrum phase in acoustic event localization.IEEE Trans. on Speech and Audio Processing, 1997, 5(3): 288-292.
  • 9[9]Rabinkin D, et al.. A DSP implementation of source location using microphone arrays. Report on Grant #MIP-9314625 to the NSF, July 1996.
  • 10D W E Schobben,et al.Transparent communication [A].Proc.of 1998 IEEE Benelux Signal Processing Chapter Symposium [C].1998.171-174.

共引文献45

同被引文献26

  • 1武思军,张锦中,张曙.阵列波束的零陷加宽算法研究[J].哈尔滨工程大学学报,2004,25(5):658-661. 被引量:44
  • 2徐尚志,苏勇,叶中付.欠定条件下的盲分离算法[J].数据采集与处理,2006,21(2):128-132. 被引量:8
  • 3HE Zhaoshui XIE Shengli FU Yu.Sparse representation and blind source separation of ill-posed mixtures[J].Science in China(Series F),2006,49(5):639-652. 被引量:24
  • 4Bofill P, Zibulevsky M. Underdetermined blind source separation using sparse repres-entations[J]. Signal Processing, 2001, 81(11): 2353.
  • 5Bofill P. Underdetermined blind separation of delayed sound sources in the frequency domain[J]. Neurocomputing, 2003, 55(3-4). 627.
  • 6Ali M, Allan K B, Noboru O. Blind separation of sources: methods, assumptions and applications[ J ]. IEICE Trans Fundamentals, 2000, E83-A(8) : 1498.
  • 7Weinstein E, Geder M, Oppenheim A V. Multi-channd signal separation by decrrdation [ J ]. IEEE Trans Speech and Audio Processing, 1993,4 (1) : 405.
  • 8Herbert B, RoBert A, Walter K. International workshop on acoustic echo and noise control[C]. Kyoto[Japan] : [s. n. ] ,2003.
  • 9Yellin D, Weinstein E. Multichannel signal separation. methods and analysis[J ]. IEEE Trans Signal Processing, 1996,44(1), 106.
  • 10Jutten N. Blind source separation for convolutive mixtures[J]. Signal Processing, 1995,45.209.

引证文献3

二级引证文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部