期刊文献+

两种决策树的事前修剪算法 被引量:9

Two algorithms of pre-pruning decision tree
在线阅读 下载PDF
导出
摘要 修剪决策树可以在决策树生成时或生成后,前者称为事前修剪。决策树上的每一个节点对应着一个样例集,通过分析样例集中样例的个数或者样例集的纯度,提出了基于节点支持度的事前修剪算法PDTBS和基于节点纯度的事前修剪算法PDTBP。为了达到修剪的目的,PDTBS阻止小样例集节点的扩展,PDTBP阻止高纯度样例集节点的扩展。分析表明这两个算法的时间复杂度均呈线性,最后使用UCI的数据实验表明:算法PDTBS,PDTBP可以在保证分类精度损失极小的条件下大幅度地修剪决策树。 Pruning decision tree may occur in the process of creating decision tree or after that, the former is called prepruning. Every node on decision tree has a corresponding sample set. By analyzing the quantity of sample in the sample set or the purity of it, algorithm PDTBS, viz. pre-pruning decision tree hased on support, and algorithm PI)TBP, viz. pre-pruning decision tree based on purity were put forward. For pre-pruning, PDTBS prevented the node of a small sample set from extending; PDTBP prevented the node of a high purity sample set from extending. The time complexities of two algorithms were analyzed linear. Experiment results on UCI data show that the two algorithms can pre-prune decision tree to a great extent, while all its accuracy hardly diminishes.
出处 《计算机应用》 CSCD 北大核心 2006年第3期670-672,共3页 journal of Computer Applications
关键词 决策树 事前修剪 支持度 纯度 decision tree pre-pruning support purity
  • 相关文献

参考文献8

  • 1QUINLAN JR.Induction of Decision Tree[J].Machine Learning,1986,1(1):81-106.
  • 2FAYYARD UM,IRAN KB.What Should Be Minimized in a Decision Tree?[A].Proceedings of Eighth National Conference on Artificial Intelligence[C].Boston.MA.USA,1990.749-754.
  • 3QUINLAN JR.Simplifying decision trees[J].International Journal of Man-Machine Studies,1987,27(3):221-234.
  • 4BRESLOW LA,AHA DW.Simplifying decision trees:a survey[J].Knowledge Engineering Review,1997,12(1):1-40.
  • 5魏红宁.决策树剪枝方法的比较[J].西南交通大学学报,2005,40(1):44-48. 被引量:43
  • 6HOGG RV,CRAIG AT.Introduction to mathematical statistics[M].London:Collier-Macmillan,1970.
  • 7MITCHELL TM.Machine Learning[M].China Machine Press,2003.
  • 8University of California.Irvine repository of machine learning database[DB/OL].ftp://ics.uci.edu in the /pub/machine-learning-databases directory,2005-05-12.

二级参考文献9

  • 1Oates T, Jemen D. The effects of training set sizes on decision tree[A]. Proc of the 14th Int'l Conf on Machine Learning[C]. Nashville: Morgan Kaufman, 1997. 254-262.
  • 2Breslow L A, A_ha D W. Simplifying decision trees: a survey[J]. Knowledge Engineering Review, 1997. 12( 1 ) : 1-40.
  • 3Breiman L, Friedman J, Olshen R A, et al. Classification and regression trees[ M]. Belmont: Wadsworth, 1984. 1-358.
  • 4Nobel A. Analysis of a complexity based pruning scheme for classification trees [ J ]. IEEE Transactions on Information Theory, 2002, 48 (8) : 2 362-2 368.
  • 5Malerba D, Semeraro G, Esposito F. Choosing the best pruned decision tree: a matter of bias [A]. Proc 5th Italian Workshop on Machine Learning[C]. Parma: University of Parma, 1994. 33-37.
  • 6Quinlan J R. Simplifying decision trees [ J]. International Journal of Man-Machine Studies, 1987, 27 (3) : 221-234.
  • 7Elomaa T, Kaafiainen M. An analysis of reduced error pruning[J]. Journal of Artificial Intelligence Research, 2001, 15 :163-187.
  • 8Niblett T, Bratko I. Learning decision rules in noisy domains[A]. Proceedings of Expert Systems 86 [ C]. Cambridge:Cambridge Uninversity Press, 1986. 25-34.
  • 9Cestnik B, Bratko I. On estimating probabilities in tree pruning[ A]. Proc of European Working Sessions on Learning[ C ].Porto: Springer-Verlag, 1991. 138-150.

共引文献42

同被引文献59

引证文献9

二级引证文献58

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部