期刊文献+

基于小波包-神经网络方法的支撑座连接螺栓松动损伤诊断的实验研究 被引量:15

Experimental Study on Diagnosing the Attachment Bolt Looseness in a Clamping Support Based on Wavelet Packet Transformation and Neural Network
在线阅读 下载PDF
导出
摘要 在某导弹支撑座模型宽带随机振动实验的基础上,针对其连接螺栓松动所产生的支撑座结构响应的非平稳特性,采用小波包分析的方法得到缩减的信号特征;然后利用BP神经网络的模式分类功能,进行了螺栓松动程度的损伤识别研究。实验结果表明,小波包结合神经网络的方法可以有效地识别该支撑座连接螺栓的松动程度。 On the basis of broad-band random vibration test on a clamping support in a missile, wavelet packet analysis method was used to obtain the reduced features of structural response signals, which have non-stationary characteristics due to the attachment bolt looseness. Then damage identification of severity of bolt looseness was studied by utilizing the pattern classification function of the BP neural network. Test results show that the combination of wavelet packets and neural networks can effectively identify the severity of bolt looseness in the clamping support.
出处 《机械科学与技术》 CSCD 北大核心 2006年第1期102-106,共5页 Mechanical Science and Technology for Aerospace Engineering
基金 国家自然科学基金项目(10176014)资助
关键词 宽带随机振动实验 支撑座结构 螺栓松动 小波包 BP神经网络 broad-band random vibration test clamping support bolt looseness wavelet packet neural network
  • 相关文献

参考文献8

  • 1张德文 魏阜旋.模型修正与破损诊断[M].北京:科学出版社,2000..
  • 2Doebling S W, Farrar C R, Prime M B. A summary review of vibration-based damage identification methods [J]. The Shock and Vibration Digest, 1998,30(2) :91 - 105.
  • 3Sohn H, Farrar C R. Damage diagnosis using time series analysis of vibration signals [J]. Smart Materials and Structures,2001 ,(10) :1 -6.
  • 4Robertson A N, Farrar C R, Sohn H. Singularity detection for structural health monitoring using holder exponents [J]. Mechanical Systems and Signal Processing, 2003,17(6) :1163-1184.
  • 5Chen J, et al. A bispectrum featurv extraction enhanced structure damage detection approach [J]. JSME International Journal, Series C, 2002,45(1) :121 -126.
  • 6Wu X, Ghaboussi J , Garrett J H. Use of neural networks in detection of structure damage [J]. Computer & Structure,1992,42(4) :649 -659.
  • 7Kaminski P C. The approximate location of damage through the analysis of natural frequencies with artificial networks [J].Journal of Process Mechanical Engineering, 1995,209 : 117- 123.
  • 8Wu Y, Du R. Feature extraction and assessment using wavelet packets for monitoring of machining process [J]. Mechanical System and Signal Processing, 1996,10(1 ) :29 -53.

共引文献2

同被引文献120

引证文献15

二级引证文献98

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部