期刊文献+

基于改进蚁群算法的四杆机构优化设计 被引量:13

Optimization Design of Four Bar Mechanism Based on the Improved Ant Colony Algorithm
在线阅读 下载PDF
导出
摘要 在机构优化设计中,为了避免基本蚁群算法容易出现停滞现象、收敛速度慢的缺陷,将遗传算法和蚁群算法结合起来,在蚁群算法的每一次迭代中,首先根据信息量选择解分量的初值,然后使用变异操作来确定解的值。针对机构运动轨迹能够最佳逼近某一给定运动规律,且机构约束较多,采用改进蚁群算法对其进行优化计算。证明改进蚁群算法应用于机械优化计算切实可行。 In order to avoid the shortcomings of the basic ant colony algorithm, such as appearing stagnation behavior, making convergence speed slowly and the like. In this paper the ant algorithm and the genetic algorit.hm are considered together. In each iteration of the ant colony algorithm, the initial values of the components of the solution are selected by the trial information at first. Then the exact solution is determined by the operations of mutation. It is used in the optimum design of four bar mechanism with given motion regulation and multi-constrains. The results show that the two algorithms are practical and the algorithm is more effective. The paper gives a new way for solving similar complicated mechanical optimization problems.
作者 刘国光
出处 《农业机械学报》 EI CAS CSCD 北大核心 2006年第1期149-151,共3页 Transactions of the Chinese Society for Agricultural Machinery
关键词 四杆机构 优化 蚁群算法 Four bar mechanism, Optimization, Ant colony algorithm
  • 相关文献

参考文献6

二级参考文献22

  • 1熊伟清,赵杰煜.遗传算法的早熟收敛[J].宁波大学学报(理工版),2001,14(2):23-27. 被引量:7
  • 2Prebil I, Krasna S, Ciglaric I. Synthesis of four-bar mechanism in a hydraulic support using a global optimization algorithm. Structural and Multidisciplinary Optimization, 2002 (24) : 246 - 251.
  • 3Yin G F, Tian G Y, Taylor D. A web-based remote cooperative design for spatial cam mechanisms. The International Journal of Advanced Manufacturing Technology,2002(20) :557-563.
  • 4Hopfield J J. Neural network and physical systems with emergent collective computational abilities. Proc. Natl. Acad. Sci., 1982,79:2554~2558
  • 5Tank D W, Hopfield J J. Simple neural optimization networks: An A/D converter, signal decision circuit, and a linear programming circuit. IEEE Trans. CAS, 1986,33(5):533~541
  • 6赵韩 陈科.基于神经网络的齿轮传动链传动比的优化设计研究[J].机械设计与研究,1998,:85-86.
  • 7Hinton G E, Sejnowskii T J,Ackley D H. Boltzmann machine: constraint satisfaction networks that learn. CMU-CS-84-119, Carnegie-Mellon Univ., 1984.
  • 8Ackley D H, Hinton G E,Sejnowskii T J. A learning algorithm for boltzmann machines. Cognitive Science, 1985,9:147~169
  • 9Aarts E H L, Korst J H M. Simulated annealing and Boltzmann machine. Chichester: John Wiley and Sons, 1989.
  • 10Kirkpatrick S, Gelatt C D, Vecchi Jr M P. Optimization by simulated annealing. Science, 1983,22:671~680

共引文献87

同被引文献132

引证文献13

二级引证文献45

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部