期刊文献+

用于入侵检测的基于粗糙集的贝叶斯分类器 被引量:2

Bayes Classifier Based on Rough Set Used in Intrusion Detection
在线阅读 下载PDF
导出
摘要 网络安全的问题日趋严重,入侵检测的研究是当今的研究热点。将数据挖掘和机器学习技术用于入侵检测是一个可行的方法。有很多算法用于入侵检测中,但有的是正确率比较低,也有的是学习或分类时间长,这些都限制了入侵检测系统在实际中的应用。文中提出了将粗糙集用于网络侦听的海量数据的属性约简,而后提出使用朴素贝叶斯进行分类预测。该方法的准确率高,而且时间性能好,适用于网络入侵检测的要求。 The technology of data minging and machine learning has been used in intrusion detection. The algorithm used in IDS needs that the accurate rate is high and the time of learming or classifying is short. Yet, lots of algorithms used in IDS cannot meet the needs which limit the use of IDS in pratice . In the paper,the naive hayes classifier based rough set reduction is proposed to use in IDS. The structure of naive hayes is simple,and learning corret efficiency and time efficiency is perfect. But it needs the independence of feature, which can be achieved by reduction based on rough set. It is fit for intrusion decahedron.
作者 翟素兰 郑诚
出处 《计算机技术与发展》 2006年第1期226-227,230,共3页 Computer Technology and Development
基金 安徽省教育厅自然基金资助项目(2002kj009)
关键词 入侵检测 朴素贝叶斯 粗糙集 属性约简 intrusion detection system naive bayes rough set festure reduction
  • 相关文献

参考文献4

  • 1MitchellTM. 曾华军 张银奎 泽.机器学习[M].北京:机械工业出版社,2003..
  • 2Information and Computer Science University of California,Irving KDD cup 1999 Data[EB/OL]. http://kdd. ics, uei.edu/databases/kddcup99/kddcup99, html, 1999 - 10.
  • 3刘清.Rough集及Rough推理[M].北京:科学出版社,2001..
  • 4Knowledge Systems Group, Dept, of Computer and Information Science, Norwegian University of Science and Technology, Trondheim, Norway. ROSETTA [ EB/OL ]. http://rosetta.lcb. uu. se/general/download/1999.

共引文献359

同被引文献13

  • 1白耀辉,陈明,王举群.利用朴素贝叶斯方法实现异常检测[J].计算机工程与应用,2005,41(34):131-132. 被引量:8
  • 2胡学钢,郭亚光.一种基于粗糙集的朴素贝叶斯分类算法[J].合肥工业大学学报(自然科学版),2006,29(2):169-172. 被引量:11
  • 3[4]张文修,吴志伟.粗糙集理论及方法.北京:科学出版社,2001
  • 4[5]Skoworn A,Rauszer C.The discerniblity matrices and functions information system Ed:SlowinⅠ.Intelligent Decision Support-handbook of Applications and Advances of the Rough Sets Theory.Dordrecht:Kluwer Academic Publisher,1991:331-362
  • 5[6]KDD Cup 1999 Data.http://kdd.ics.nci.edu/databases/kddcup99/kddcup99.html,1999
  • 6[7]Knowledge Systems Group,Dept.of Computer and Information Science,Norwegian University of Science and Technology,Trondheim,Norway.ROSETTA.http://rosetta.lcb.uu.se/general/download/1999
  • 7MITCHELL TM.机器学习[M].曾华军,张银奎.北京:机械工业出版社,2003.
  • 8Han J W, Kamber M. Data Mining.. Concepts and Techniques. San Francisco, CA: Morgan Kaufmann, 2000
  • 9Ayoade J. Feature deduction and ensemble design of intrusion detection systems. Article Computers & Security, 2005,24(6)
  • 10Liu Huan, Setiono R. Feature selection and elassification-a probabilistie wrapper approach[C]. In:Proceedings of the Ninth International Conference on Industrial and Engineering Applications of AI and ES

引证文献2

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部