期刊文献+

蕴含K_5-e图的度序列

Degree Sequences of Potential K_5-e-Graph
在线阅读 下载PDF
导出
摘要 设σ(G,n)是具有下述性质的最小正偶数,每一项和至少为σ(G,n)的n项可图序列π都有一个实现包含G作为子图.本文给出σ(K5-e,7)=32,σ(K5-e,8)=36,以及当n≥9时,σ(K5-e,n)=2[5n2-6]. A sequence π is potentially K5- e graphical if it has a realization containing a n)denote the smallest degree sum such that every graphical .sequence π with σ(π)≥π(K5- e,n) is potentially K5-e graphical. In this paper, we prove that σ(K5-e,7)=32,σ(K5-e,8)=36, and for n≥9.σ(K5-e,n)=2[(5n/6)/2].
作者 黄琴
出处 《新疆大学学报(自然科学版)》 CAS 2005年第3期276-284,共9页 Journal of Xinjiang University(Natural Science Edition)
关键词 蕴含K5-e可图序列 度序列 实现 potentially K5- e graphical sequence degree sequence realization
  • 相关文献

参考文献13

  • 1Erdo's P, Jacobson M S and Lehel J. Graphs realizing the same degree sequences and their respective clique numbers[M], in Graph Theory, Combinatorics Applications, Vol. 1(Y. Alavietal. ed.) John Wiley Sons, Inc, New York,1991, 439-449.
  • 2Li Jiong-Sheng and Song Zi-Xia An extemal problem on the potentially Pk-graphical sequences[J]. Discrete Math.2000.212: 223-231.
  • 3Li Jiong-Sheng and Song Zi-Xia. The smallest degree sum that yields potintially Pk-graphical sequences[J]. J Graph Theory, 1998,29:63-72.
  • 4Jiong-Sheng and Song Zi-Xia. On the potetially Pk-raphic sequences[J]. Discrete Math,1999.195: 255-262.
  • 5Li Jiong-Sheng, Song Zi-Xia, Lou Rong. The Erdos-Jacobson-Lehel conjecture on potentially Pk-graphical sequences[J]. Science in China, 1998, 41(5): 510-520.
  • 6LailLai Chunhui. Potentially Ck-graphical degree sequences[J]. J ZhangZhou Teachers College, 1997,11(4): 27-31.
  • 7Lai Chunhui. The smallest degree sum that yields potentially Ck graphical sequences[J]. Journal of Combinatorial Mathematics and Combinatorial Computing, 2004, 49: 57-64.
  • 8Lai Chunhui. A note on potentially K4-e graphical sequences[J]. Australasian J of Combinatorics.2001,24: 123-127.
  • 9QinHuang Qin. Potentially Km-e-graphical degree sequences[J]. J ZhangZhou Teachers College, 2002. 15(4): 26-28.
  • 10Kleitman D J. Wang D L. Algorithm for constructing graphs and digraphs with given valences and factors[J]. Discrete Math. 1973,6(1):79-88.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部