摘要
首先用弹性动力学Betti-Rayleigh互易定理证明并建立了处理运动负荷作用下结构动力响应的广义Duhamel积分表示式,把运动荷载问题转化为求解位移脉冲响应函数,然后利用Laplace变换和Hankel变换求得了板的竖向位移在变换域中的解;最后通过积分反演。
Based on Betti Rayleigh reciprocal theorem of elastodynamics,this paper establishes a unified formula generalized Duhamels integral for dealing with moving load problem.An impluse response (Greens function) used in the generalized Duhamels integral is obtained by means of the Laplaces and Hankels transform.The analytical solution of the moving load problem is evaluated by converting variables x,y,t to x-vτ,y,t-τ .
出处
《东南大学学报(自然科学版)》
EI
CAS
CSCD
1996年第4期89-94,共6页
Journal of Southeast University:Natural Science Edition
基金
国家自然科学基金资助项目
高校博士点基金项目
关键词
运动荷载
瞬态响应
无限板
粘弹性地基
板
moving load
reciprocal theorem
integral transform
transient response
generalized Duhamels integral
infinite plate, viscoelastic foundation