期刊文献+

多个源信号混叠的盲分离几何算法 被引量:7

Geometric Blind Separation Algorithm for Many Source Signals
在线阅读 下载PDF
导出
摘要 该文提出了一种多个均匀分布的源信号混叠的盲分离几何算法,该算法以矩阵的QR分解原理为分离的理论指导,并结合信号在各个阶段其scatter图所具有的特殊几何性质,首先将混叠信号进行白化,使其scatter图恢复为独立时的scatter图形状,然后将白化后的scatter图通过C2n次旋转变换,使其与各坐标轴平行,从而得到n个信号的分离.该方法第一次从代数上给出了几何算法的理论指导,从而真正得到了几何算法向多个信号混叠的推广.该算法不仅计算简单,同时有很好的仿真分离效果.在三个信号混叠的情况下,相对于Hyvarinen(2000)在分离时间上缩短了近30%. Based on the idea of QR decomposition, a geometric blind separation algorithm is proposed for uniform distribution source signals in this paper. It is known that if source signals follow uniform distribution, the scatter plots of source signals and mixtures will show special geometrical property. Firstly, the mixture signals are whiten so that the scatter plot of which is changed into the scatter plot when they are independent, and then the scatter plot of whiten signals is rotated by Cn^2, times Givens transformation. Finally, the scatter plot is paralleled to the coordinate axis. Consequently, the mixture signals are separated. A theory guidance to implement the geometric algorithm is given from the viewpoint of algebra. And this paper firstly presents an algorithm to do blind source separation of more than three source signals. Compared with the algorithm of Hyvarinen(2000), not only the separation accuracy of this algorithm is better, but also the separation time decreases. On the same condition that the mixture signals are mixed by three source signals, the experiment shows 30 percent decrease in the separation time.
出处 《计算机学报》 EI CSCD 北大核心 2005年第9期1575-1581,共7页 Chinese Journal of Computers
基金 国家自然科学基金(60274006) 国家杰出青年自然科学基金(60325310) 国家教委跨世纪人才培养计划基金 广东省自然科学团队研究项目基金(04205783) 广东省自然科学基金重点项目(020826)资助
关键词 旋转变换 几何算法 盲分离 白化 scatter图 Givens transformation geometric algorithm blind separation whiten scatter plot
  • 相关文献

参考文献8

  • 1Taro Yamaguchi, Katsuhisa Hirokawa, Kazuyoshi Itoh. Independent component analysis by transforming a scatter diagram of mixtures of signals. Optics Communications, 2000, 173(1~6): 107~114.
  • 2Puntonet C.G., Prieto A., Ortega J.. New geometrical approach for blind separation of sources mapped to a neural network. In: Proceedings of the International Workshop on Neural Networks for Identification, Control, Robotics, and Signal/Image Processing, Venecia, Italia, 1996, 174~182.
  • 3Puntonet C.G., Prieto A.. Geometric approach for blind separation of signals. Electronics Letters, 1997, 33(10): 835~836.
  • 4Mansour A., Puntonet C.G., Ohnishi N.. A simple ICA algorithm based on geometrical approach. In:Proceedings of the 6th International Symposium on Signal Processing and its Appications, Kuala-Lampur, Malaysia, 2001, 1: 13~16.
  • 5Mansour A., Ohnishi N., Puntonet C.G.. Blind multiuser separation of instantaneous mixture algorithm based on geometrical concepts. Signal Processing, 2002, 82(8): 1155~1175.
  • 6谢胜利,章晋龙.基于旋转变换的最小互信息量盲分离算法[J].电子学报,2002,30(5):628-631. 被引量:15
  • 7Beloouchrani A., Amin M.G.. Blind source separation based on time-frequency signal representations. IEEE Transactions on Signal Process, 1998, 46(11): 2888~2897.
  • 8Hyvarinen A., Oja E.. Independent component analysis: Algorithms and applications. Neural Networks, 2000, 38(13): 411~430.

二级参考文献2

共引文献14

同被引文献75

  • 1何昭水,谢胜利,章晋龙.基于QR分解的盲源分离几何算法[J].控制理论与应用,2005,22(1):17-22. 被引量:4
  • 2冶继民,张贤达,朱孝龙.信源数目未知和动态变化时的盲信号分离[J].中国科学(E辑),2005,35(12):1277-1287. 被引量:20
  • 3程迪祥,黄梦薇,董立军,罗宏.基于相关性矩阵的环形天线阵列的研究[J].微计算机信息,2006,22(11X):144-146. 被引量:5
  • 4Hanson L, Xu G. A Hyperplane Based Al-gorythm for the Digital Co-Chanal Communication Problem[C].IEEE Transcations on Information Theory, Vol. 43, No. 5, September 1997.
  • 5Liu H. Smart Antenna Application to Wireless Sys-tem[D]. Ph.D. thesis, U. of Texas at Austin, Austin, TX, 1995.
  • 6Liu H, Xu GDeterministic Approach to Blind System Estimation[J]. IEEE Signal Processing Letter, 1994, 1(12):205-204.
  • 7Kenji Nakayama, Akihiro Hirano, Takayuki Sakai. An adaptive nonlinear function controlled by kurto-sis for blind source separation[C]. Honolulu, Hawai, May 2002.
  • 8Mansour A, Puntonet C G. Blind multiusers separation of instantaneous mixture algorithm base on geometiccal concepts[C]. Signal Processing, 2002, 82(8):1155-1175.
  • 9Cao X R, Liu R W. General approach to blind source separation. IEEE Trans Signal Process, 1996, 44:562-571
  • 10Comon E Independent component analysis, a new concept? Signal Process, 1992, 36(3): 287-314

引证文献7

二级引证文献22

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部