期刊文献+

通过再活化浸渍金属盐的活性炭来发展中孔结构(英文) 被引量:26

Modification of commercial activated carbon through gasification by impregnated metal salts to develop mesoporous structures
在线阅读 下载PDF
导出
摘要 研究了在椰子壳活性炭上浸渍金属盐(硝酸铁和硫酸铁)后,在二氧化碳气氛中催化活化对中孔结构的影响.发现硝酸铁对活性炭比表面积(-1 930 m2/g)的增加和中孔结构(-10 nm)的发展更有效.改性活性炭具有发达的中孔结构,显示了更大的维生素B12吸附容量(是改性前的5倍~8倍)和更快的吸附速度.中孔结构的发展基于三个方面的原因:(1)在活化过程中,浸渍在活性炭微孔内的金属盐分解所释放的氧化性气体与微孔碳壁反应,扩大了孔径;(2)在高温下,来自于金属盐的金属氧化物被碳还原,扩大了孔径;(3)在金属铁存在下,碳壁被催化活化,大大提高了活性炭的中孔率.由此提供了一种廉价的从商业活性炭制备中孔活性炭的有效途径. Commercial coconut shell based activated carbon (AC) was used to investigate the production of increased mesoporosity by impregnating with catalytic metal salts such as Fe( NO3 ) 3 and Fe2 ( SO4 ) 3 followed by CO2 gasification. The salts are found be effective in enlarging the pore size of AC and Fe( NO3 )3 is the more effective one to increase pore size and surface area, up to 10 nm and 1 930 m^2/g, respectively. Modified AC shows a much larger adsorption capacity (5 -8 times as large as that of as-received AC) and a more rapid adsorption rate for vitamin B12. Three mechanisms are proposed to modify the surface properties and pore size of AC : ( 1 ) NOx and SOx liberated from the impregnated salts burn the carbon wall to enlarge pore size; (2) Metal oxide reacts with the carbon wall to enlarge pore size, accompanied by reduction to the corresponding metal; and ( 3 ) Metal has a catalytic effect during CO2 gasification of the carbon wall of the AC. Graphitization of the carbon wall caused by metal is also observed. The present modification method is a promising, convenient and cheap way to modify AC to obtain mesopores.
出处 《新型炭材料》 SCIE EI CAS CSCD 北大核心 2005年第3期198-204,共7页 New Carbon Materials
关键词 活性炭 中孔结构 气化 吸附 Activated carbon Mesoporous structure Gasification Adsorption
  • 相关文献

参考文献24

  • 1Qiao W, Ling L, Zha Q, et al. Preparation of a pitch based activated carbon with a high specific surface area[J]. J Mater Sci, 1997, 32: 4 447-4 453.
  • 2Avom J, Ketcha Mbadcam J, Noubactep C, et al. Adsorption of methylene blue from an aqueous solution on to activated carbons from palm-tree cods[J]. Carbon, 1997, 35: 365-369.
  • 3Otowa T, Nojima Y, Miyazaki T. Development of KOH activation high surface area carbon and its application to drinking water purification[J]. Carbon, 1997, 35: 1 315-1 319.
  • 4Jia Y, Xiao B, Thomas K. Adsorption of heavy metal ions from aqueous solution on functional carbon. Extended abstracts[A]. Eurocarbon 2000 or 1st World conf. on Carbon[C]. Berlin, Germany: 2000. 689-690.
  • 5Jia Y, Steele C, Hayward I, et al. Mechanism of adsorption of gold and silver species an activated carbons[J]. Carbon, 1998, 36: 1 299-1 308.
  • 6Tamai H, Yoshida T, Sasaki M, et al. Dye adsorption on mesoporous activated carbon fiber obtained from pitch containing yttrium complex[J]. Carbon, 1999, 37: 983-989.
  • 7Starek J, Zukal A, Rathousky J. Comparison of the adsorption of humic acids from aqueous solutions on activated carbon and activated charcoal cloths[J]. Carbon, 1994, 32: 207-211.
  • 8Chai G, Yoon S, Yu J, et al. Ordered porous carbons with tunable pore sizes as catalyst supports in direct methanol fuel cell[J]. J Phys Chem B, 2004, 108: 7 074-7 079.
  • 9Lee J, Yoon S, Hyeon T, et al. Synthesis of new mesoporous carbon and its application to electrochemical double-layer capacitors[J]. Chem Commun, 1999(21): 2 177-2 178.
  • 10Alvarez S, Blanco-Lopez M C, Miranda-Ordieres A J, et al. Electrochemical capacitor performance of mesoporous carbons obtained by templating technique[J]. Carbon, 2005, 43: 866-870.

二级参考文献59

  • 1[1]Taguchi A, Smatt J H, Lindén M. Carbon monoliths possessing a hierarchical, fully interconnected porosity[J]. Adv Mater, 2003, 15: 1209-1211.
  • 2[2]Smatt J H, Schunk S, Lindén M. Versatile double-templating synthesis route to silica monoliths exhibiting a multimodal hierarchical porosity[J]. Chem Mater, 2003, 15: 2354-2361.
  • 3[3]Kyotani T, Nagai T, Inoue S, et al. Formation of new type of porous carbon by carbonization in zeolite nanochannels[J]. Chem Mater, 1997, 9: 609-615.
  • 4[4]Lu A H, Schmidt W, Spliethoff B, et al. Synthesis of ordered mesoporous carbon with bimodal pore system and high pore volume[J]. Adv Mater, 2003, 15: 1602-1606.
  • 5[5]Ryoo R, Joo S H, Kun S. Synthesis of highly ordered carbon molecular sieves via template-mediated structural transformation[J]. J Phys Chem B, 1999, 103: 7743-7746.
  • 6[6]Lu A H, Schmidt W, Taguchi A, et al. Taking nanocasting one step further: replicating CMK-3 as a silica material[J]. Angew Chem Int Ed, 2002, 41: 3489-3492.
  • 7[7]Kang M, Yi S H, Lee H I, et al. Reversible replication between ordered mesoporous silica and mesoporous carbon[J]. Chem Commun, 2002: 1944-1945.
  • 8[1]Kotz R,Carlen M.Principles and applications of electrochemical capacitors[J].Electrochimica Acta,2000,45(15/16):2483-2498.
  • 9[4]Frackowiak E,Béguin F.Carbon materials for the electrochemical storage of energy in capacitors[J].Carbon,2001,39(6):937-950.
  • 10[7]Khalili R N,Cambell M,Sandi G,et al.Production of micro- and mesoporous activated carbon from paper mill sludge Ⅰ.Effect of zine chloride activation[J].Carbon,2000,38:1905-1915.

共引文献67

同被引文献465

引证文献26

二级引证文献267

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部