期刊文献+

小学生数学问题解决中视觉空间表征的研究 被引量:18

A Study on Visual-spatial Representations in Mathematical Word Problem Solving among Elementary School Students
在线阅读 下载PDF
导出
摘要 本研究区分了两类数学应用题:非视觉化题目与视觉化题目,采用数学测验与个别访谈相结合的方法,考察了54名小学四、五、六年级不同学业水平学生的视觉空间表征。结果表明:图式表征在非视觉化题目与视觉化题目上都极大地促进了问题解决,图像表征妨碍非视觉化题目的解决但与视觉化题目的解决无关,并提出图式表征和图像表征在两类题目上有不同的含义。六年级学生的解题成绩及图式表征有显著的提高,但图像表征与年级因素无关。差生的图式表征能力很差,而在视觉化题目上使用图像表征显著地多于优生及中等生。在非视觉化题目的非视觉空间表征与图式表征之间的转换灵活性上,优生表现了明显的优势。 Two types of mathematical word problems were developed: nonvisual problems (NVP) and visual problems (VP). By using mathematics test and individual interview, this study investigated visual-spatial representations in mathematical word problem solving among 54 elementary school students with different mathematical performance in grade 4, grade 5, and grade 6. The results showed that: Schematic representations promote NVP and VP solving success, whereas pictorial representations may present an obstacle to NVP solving but show no correlations with VP solving; therefore schematic representations and pictorial representations may have different meanings in the two types of mathematical word problems. The students in grade 6 performed better than the others in mathematical problem solving and use of schematic representations, but no grade differences existed in use of pictorial representations. The low-achievers in mathematics were poor in use of schematic representations, but the extent of use of pictorial representations in VP solving was higher than that of high-achievers and average-achievers. The high-achievers performed better than the others in transferring from non-visual-spatial representations to schematic representations in NVP solving.
作者 徐速
出处 《心理发展与教育》 CSSCI 北大核心 2005年第3期78-82,共5页 Psychological Development and Education
关键词 数学问题解决 非视觉化题目 视觉化题目 视觉空间表征 图式表征 图像表征 mathematical word problem solving nonvisual problems(NVP) visual problems(VP) visual-spatial representations schematic representations pictorial representations
  • 相关文献

参考文献11

  • 1Presmeg N C, Balderas-Canas P E. Visualization and affect in nonroutine problem solving. Mathematical Thinking and Learning, 2001,3(4) : 289- 313.
  • 2Aspinwall L, Shaw K L, Presmeg N. Uncontrollable mental imagery: Graphical connections between a function and its derivative. Educational Studies in Mathematics, 1997, 33:301 -317.
  • 3Stylianou D A. On the interaction of visualization and analysis: the negotiation of a visual representation in expert problem solving. Journal of Mathematical Behavior, 2002, 21 : 303 - 317.
  • 4Booth R, Thomas M. Visualization in mathematics lesming: arithmetic problem-solving and student difficulties. Journal of Mathematical Behavior, 2000, 18(2) : 169 - 190.
  • 5Hegarty M, Kozhevnikov M. Types of visual-spatial representations and mathematical problem solving. Journal of Educational Psychology, 1999, 91(4) : 684 - 689.
  • 6Kozhevnlkov M, Hegarty M, Mayer R E. Revising the visualizer-vervalizer dimension: evidence for two types of visualizers. Cognition and Instruction, 2002, 20(1) : 47 - 77.
  • 7俞国良,曾盼盼.数学学习不良儿童视觉-空间表征与数学问题解决[J].心理学报,2003,35(5):643-648. 被引量:46
  • 8姚飞,张大均.应用题结构分析训练对提高小学生解题能力的实验研究[J].心理学报,1999,31(1):53-59. 被引量:25
  • 9Lowrle T, Kay R. Relationship between visual and nonvisual solution methods and difficulty in elementary mathematics. The Journal of Educational Research, 2001,94(4) : 248 - 255.
  • 10杨小冬,方格,毕鸿燕,王桂琴.非空间问题中运用空间表征策略的研究综述[J].心理科学,2001,24(1):78-80. 被引量:5

二级参考文献28

  • 1Geary D C. Mathematical Disabilities: Cognitive, Neuropsychological, and Genetic Components. Psychological Bulletin, 1993, 114(2) : 345 - 362.
  • 2Montague M, Bos C. Cognitive and metacognitive characteristics of eighth - grade students'mathematical problem solving. Learning and Individual Differences, 1990, (2) : 109 - i27.
  • 3Presmeg N C. Prototypes, metapho.rs, metonymies, and imaginative rationality in high school mathematics. Educational Studies in Mathematics, 1992, 23:595-610.
  • 4Presmeg N C. Visualization in high school mathematics. For Learning of Mathematics, 1986, 63 : 42 - 46.
  • 5Presmeg N C. Visualization and mathematical giftedness. Educational Studies in Mathematics, 1986, 17 : 297 - 311.
  • 6Lean C, Clements M A. Spatial ability, visual imagery, and mathematical performance. Educational Studies in Mathematics, 1981,12: 267-299.
  • 7Hegarty M, Kozhevnikov M. Type of visual - spatial representations and mathematical problem solving. Journal of Educational Psychology, 1999, 91(4) : 684-689.
  • 8Clarizio H F, Phillips S E. Defining severe discrepancy in the diagnosis of learning disabilities: a comparison of methods. Journal of School Psychology, 1989, 27 : 383 - 397.
  • 9Lohman D. Spatial abilities as traits, processes, and knowledge.In : R J Steinberg ed. Advances in the psychology of human intelligence. Hillsdale, NJ: Erlbaum, 1988. 181 -248.
  • 10Leong C K, Cheng S C, Das J P. Simultaneous-successive syntheses and planning in Chinese readers. International Journal of Psychology, 1985, 20:19 -31.

共引文献82

同被引文献164

引证文献18

二级引证文献65

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部