摘要
Finite volume element method for the Stokes problem is considered. We use a conforming piecewise linear function on a fine grid for velocity and piecewise constant element on a coarse grid for pressure. For general triangulation we prove the equivalence of the finite volume element method and a saddle-point problem, the inf-sup condition and the uniqueness of the approximation solution. We also give the optimal order H^1 norm error estimate. For two widely used dual meshes we give the L^2 norm error estimates, which is optimal in one case and quasi-optimal in another ease. Finally we give a numerical example.
Finite volume element method for the Stokes problem is considered. We use a conforming piecewise linear function on a fine grid for velocity and piecewise constant element on a coarse grid for pressure. For general triangulation we prove the equivalence of the finite volume element method and a saddle-point problem, the inf-sup condition and the uniqueness of the approximation solution. We also give the optimal order H^1 norm error estimate. For two widely used dual meshes we give the L^2 norm error estimates, which is optimal in one case and quasi-optimal in another ease. Finally we give a numerical example.
基金
Supported by the Natural Science Foundation of China (No.10471079, 10071044) and the Research Fund of Doctoral Program of High Education by State Education Ministry of China.