期刊文献+

Analysis on a Finite Volume Element Method for Stokes Problems

Analysis on a Finite Volume Element Method for Stokes Problems
原文传递
导出
摘要 Finite volume element method for the Stokes problem is considered. We use a conforming piecewise linear function on a fine grid for velocity and piecewise constant element on a coarse grid for pressure. For general triangulation we prove the equivalence of the finite volume element method and a saddle-point problem, the inf-sup condition and the uniqueness of the approximation solution. We also give the optimal order H^1 norm error estimate. For two widely used dual meshes we give the L^2 norm error estimates, which is optimal in one case and quasi-optimal in another ease. Finally we give a numerical example. Finite volume element method for the Stokes problem is considered. We use a conforming piecewise linear function on a fine grid for velocity and piecewise constant element on a coarse grid for pressure. For general triangulation we prove the equivalence of the finite volume element method and a saddle-point problem, the inf-sup condition and the uniqueness of the approximation solution. We also give the optimal order H^1 norm error estimate. For two widely used dual meshes we give the L^2 norm error estimates, which is optimal in one case and quasi-optimal in another ease. Finally we give a numerical example.
作者 Hong-xing Rui
出处 《Acta Mathematicae Applicatae Sinica》 SCIE CSCD 2005年第3期359-372,共14页 应用数学学报(英文版)
基金 Supported by the Natural Science Foundation of China (No.10471079, 10071044) and the Research Fund of Doctoral Program of High Education by State Education Ministry of China.
关键词 Finite volume element Stokes problem numerical analysis Finite volume element, Stokes problem, numerical analysis
  • 相关文献

参考文献17

  • 1Adams, R. Sobolev spaces. Academic Press, New York, 1975.
  • 2Babuslm, I., Aziz, A.Z. The mathematical foundations of the finite element method with applications to partial differential equations. Academic Press, New York, 1972.
  • 3Bank, R.E., Rose, D.J. Some error estimates for the box method. SIAM J. Numer. Anal., 24:777 787(1987).
  • 4Bernardi, C., Raugcl, G. Analysis of some finite elements for the Stokes problem. Math. Comp., 44:71-79(1985).
  • 5Cai, Z.Q. On tile finite volume element. Numer. Math., 28:392-402 (1991).
  • 6Cai, z.Q., Mandel, J., McCormick. The finite volume element method for diffusion equations on general triangulations. SIAM J. Numer. Anal., 28:713 735 (1991).
  • 7Cai, Z.Q., McCormick. On thc accuracy of the finite volume element method for diffusion equations on composite grids. SIAM J. Numcr. AnaL, 27:635 655 (1990).
  • 8Chou, S. Analysis and Convergence of a covolume method for generalized Stokes problem, hiath. Comp.,66:85 104 (1997).
  • 9Chou, S.H., Li, Q. Error estimates in L^2, H^1 and L^∝ in covolume methods for elliptic and parabolic problems: aunified approach. Math. Comp., 69:103 120 (1999).
  • 10Ciarlet, P.G. Tile Finite Element Method'f0r Elliptic Problems. North-Holland, Amsterdam, 1978.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部