期刊文献+

微分求积单元法在结构工程中的应用 被引量:12

Application of Differential Quadrature Element Methodin Structure Engineering
在线阅读 下载PDF
导出
摘要 微分求积法(DifferentialQuadratureMethod)是求解偏微分方程和积分—微分方程的一种数值方法,该法具有计算简便、精度较高和易于实现等优点。微分求积单元法(DifferentialQuadratureElementMethod)是在微分求积法的基础上结合区域分割和集成规则而形成的一种新的数值计算方法,能通过自适应地选取微分求积网点数目正确模拟构件的刚度和荷载性质,其精度可通过细分单元或增加离散点数目加以提高。微分求积单元法是一种可供选择的、性能优越的数值计算方法。本文将详细论述这一数值方法的基本原理,并通过数值算例说明该方法的应用过程及其优越性,为这一方法在结构工程中的推广应用提供参考。 Differential quadrature method is a numerical solution techniques for partial differential equations and integro-differential equations. And it combines the advantages of simple and convenient calculation, high accuracy and easy implementation. Based on the differential quadrature method and the finite cutting and integrated techniques, Differential quadrature element method (DQEM) was established. By adaptively selecting the discrete point, it can reflect the characteristic of stiffness and external force of members. And the precision can be improved by subdividing members and increasing the number of the discrete points. Differential quadrature element method is an alternative numerical solution techniques. The basic principle of this method and the application in structure engineering were discussed. The numerical result demonstrates DQEM, and the reference for the application of this method is provided.
作者 聂国隽 仲政
出处 《力学季刊》 CSCD 北大核心 2005年第3期423-427,共5页 Chinese Quarterly of Mechanics
基金 同济大学理科科技发展基金资助项目(TJLK0413) 国家杰出青年科学基金(10125209)
关键词 微分求积单元法 微分求积法 结构工程 differential quadrature element method differential quadrature method structure engineering
  • 相关文献

参考文献16

  • 1王鑫伟.微分求积法在结构力学中的应用[J].力学进展,1995,25(2):232-240. 被引量:90
  • 2王勖成 邵敏.有限单元法基本原理及数值方法(第2版)[M].北京:清华大学出版社,2000..
  • 3Bellman R E, Casti J. Differential quadrature and long-term integration[J]. J Math Anal Appl, 1971, 34:235 - 238.
  • 4Wang X, Bert C W, Striz A G. Differential quadrature analysis of deflection, bucking, and free vibration of beams and rectangular plates[J]. Computers & Structures, 1993, 48(3):473 - 479.
  • 5Du H, Lim M K, Lin R M. Application of generalized differential quadrature method to structural problems[J]. Int J Numer Methods eng, 1994, 37:1881- 1896.
  • 6王永亮,王鑫伟.边缘弹性约束圆薄板的大挠度分析[J].江苏力学,1995(10):6-12. 被引量:1
  • 7Bert C W, Malik M. The differential quadrature method in computational mechanics: A review[J]. Appl Mech Rev, 1996, 49:1 - 28.
  • 8Striz A G, Chen W L, Bert C W. Static analysis of structures by the quadrature element method[J]. Int J Solids Structures, 1994, 30(20) :2807 - 2818.
  • 9Chen C N. The two-dimensional frames model of the differential quadrature element method[J]. Computers & Structures, 1997, 62(3) :555 - 571.
  • 10Chen C N. The warping torsion bar model of the differential quadrature element method[J], Computers & Structures, 1998, 66(2-3)249 - 257.

二级参考文献7

  • 1王鑫伟.微分求积法在结构力学中的应用[J].力学进展,1995,25(2):232-240. 被引量:90
  • 2陈惠发著 周绥平译.钢框架稳定设计[M].上海:上海世界图书出版公司,1999.232-241.
  • 3Striz A G, Chen W L, Bert C W. Static analysis of structures by the quadrature element method (QEM)[J]. Int. J. Solids Structures,1994, 30(20) :2807 - 2818.
  • 4Chen C N. The warping torsion bar model of the differential quadrature element method[J]. Computers & Structures, 1998, 66(2 - 3) :249 - 257.
  • 5Chen C N. The Timoshenko beam model of the differential quadrature element method[J]. Computational Mechanics, 1999,24:65 - 69.
  • 6Bert C W, Malik M. The differential quadrature method in computational mechanics: A review[J]. Appl Mech Rev, 1996, 49,1 - 28.
  • 7链川和郎著 王松涛译.结构的弹塑性稳定内[M].北京:中国建筑工业出版社,1992.42-86.

共引文献93

同被引文献105

引证文献12

二级引证文献20

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部