期刊文献+

一种快速而精确的多人脸检测与定位算法 被引量:7

Rapid and Accurate Algorithm for Multiface Detection and Location
在线阅读 下载PDF
导出
摘要 根据由粗到精的思路,综合利用了眼睛器官的特征、人脸模板以及基于人脸区域象素分布的统计信息等线索.首先用基于AdaBoost学习算法的级联模型发现可疑人脸区域,然后在可疑人脸区域内发现可疑眼睛区域并组合可疑眼睛区域对得到候选人脸区域,最后用人脸模板验证候选人脸区域,精化人脸定位.实验表明,本算法能快速而精确地实现多人脸检测与定位,且对彩色图像和灰度图像都适用. The algorithm proposed in this paper following the thought of “coarse-to-fine”, makes use of features of eyes, face templates, statistical information based on the distribution of pixels in the face region and so on. First, suspicious regions that may contain faces are discovered by a cascaded model based on AdaBoost learning algorithm. Second, eye-analogue segments are discovered in the suspicious region and then a pair of eye-analogue segments is treated as left and right eyes in a face pattern if their placement is consistent with the anthropological characteristic of human eyes. The image patch containing these segments is selected as a face candidate. Third, accurate face regions are obtained by eliminating false positives which can not pass the verifier composed of face templates. Experimental results show that this algorithm can detect and locate multifaces accurately and rapidly, suitable for color or gray level images.
出处 《小型微型计算机系统》 CSCD 北大核心 2005年第9期1520-1524,共5页 Journal of Chinese Computer Systems
基金 江苏省"十五"科技攻关计划(BE2001028)资助 江苏省自然科学基金(BK2004079)资助.
关键词 人脸检测 人脸识别 人脸模板 AdaBoost学习算法 级联模型 face detection face recognition face template AdaBoost learning algorithm cascaded model
  • 相关文献

参考文献13

  • 1李士进,熊辉,陆建峰,杨静宇.一种稳健的人脸检测方法[J].小型微型计算机系统,2000,21(7):719-721. 被引量:10
  • 2梁路宏,艾海舟,徐光祐,张钹.人脸检测研究综述[J].计算机学报,2002,25(5):449-458. 被引量:355
  • 3Govindaraju V. Locating human faces in photographs[J]. International Journal of Computer Vision, 1996,19(2):129-146.
  • 4Wu J-X, Zhou Z-H. Efficient face candidates selector for face detection[J]. Pattern Recognition, 2003,36 (5) : 1175-1186.
  • 5Yang M H, Ahuja N, Kriegman D. Face detection using mixtures of linear subspaces[C]. In: Proc Conference on Automatic Face and Gesture Recognition, Grenoble, France, 2000, 70-76.
  • 6Rowley H-A, Baluja S, Kanade T. Neural network-based face detection[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1998,20(1):23-38.
  • 7Paul Viola, Michael J Jones. Robust real-time object detection[C]. In: Proc. Of IEEE Workshop on Statistical and Computational Theories of Vision, 2001.
  • 8Feng G C, Yuen P C. Multi cues eye detection on gray intensity images[J], Pattern,Recognition, 2001,34(5): 1033-1046.
  • 9Alattar M A, Rajala S A. Facial features localization in front view head and shoulders images [C]. In: Proceedings of the IEEE International Conference on Acoustics, Speech and Signal Processing, May, Arizona, 1999, (6) :3557-3560.
  • 10Bruneli R, Poggio T. Face recognition: Features versus templates [J]. IEEE Transactions on pattern analysis and machine intelligence, 1993,15(10) : 1042-1052.

二级参考文献66

  • 1沈俊,模式识别与人工智能,1987年,1期,86页
  • 2熊辉,硕士学位论文,1998年
  • 3Lin C,Pattern Recognition,1996年,29卷,12期,2079页
  • 4Ying Dai,Proc ICPR,1994年,137页
  • 5Guang Zhengyang,Pattern Recognition,1994年,27卷,1期,53页
  • 6Craw I, Ellis H, Lishman J. Automatic extraction of face features. Pattern Recognition Letters, 1987, 5(2):183-187
  • 7Yang G Z, Huang T S. Human face detection in a complex background. Pattern Recognition, 1994, 27(1):53-63
  • 8Dai Y, Nakano Y. Face-texture model based on SGLD and its application in face detection in a color scene. Pattern Recognition, 1996, 29(6):1007-1017
  • 9Kouzani A Z, He F, Sammut K. Commonsense knowledge-based face detection. In: Proc Conference on Intelligent Engineering Systems, Budapast, Hungary, 1997. 215-220
  • 10Garcia C, Tziritas G. Face detection using quantized skin color regions merging and wavelet packet analysis. IEEE Trans Multimedia, 1999, 1(3):264-277

共引文献361

同被引文献71

引证文献7

二级引证文献17

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部