期刊文献+

BERGMAN TYPE PROJECTIONS ON L^p SPACES 被引量:1

BERGMAN TYPE PROJECTIONS ON L^p SPACES
在线阅读 下载PDF
导出
摘要 The paper is a survey on the action of Bergman type projections on various Lp on three types of holomorphic function spaces: weighted Bergman spaces, the Bloch spaces. The focus is space, and diagonal Besov spaces. The paper is a survey on the action of Bergman type projections on various Lp on three types of holomorphic function spaces: weighted Bergman spaces, the Bloch spaces. The focus is space, and diagonal Besov spaces.
作者 Kehe Zhu
出处 《Analysis in Theory and Applications》 2005年第2期157-165,共9页 分析理论与应用(英文刊)
关键词 Bergman projection Bergman kernel integral operator Bergman projection, Bergman kernel, integral operator
  • 相关文献

参考文献7

  • 1Forelii, F. and Rudin, W., Projections on Spaces of Holomorphic Functions in Balls, Indiana Univ.Math. J., 24(1974), 593-602.
  • 2Kures, O. and Zhu, K., A Class of Integral Operators on the Unit Ball, Integral Equations and Operator Theory, to Appear.
  • 3Pichorides, S. K., On the Best Values of the Constants in the Theorems of M. Riesz, Zygmund, and Kolmogorov, Studia Math., 44(1972), 165-179.
  • 4Rudin, W., Function Theory in the Unit Ball of C^n, Springer-Verlag, New York, 1980.
  • 5Zhu, K., A Forelli-Rudin Type Theorem, Complex Variables, 16(1991), 107-113.
  • 6Zhu, K., Spaces of Holomorphic Functions in the Unit Ball, Springer, New York, 2004.
  • 7Zhu, K., A Sharp Norm Estimate of the Bergman Projection on L^p Spaces, Contemporary Math,to Appear.

同被引文献5

  • 1ZHU K H. Operator Theory in Function Spaces[M]. New York:Dekker, 1990: 54-84.
  • 2LARS V. Ahlfors. Complex Analysis[M]. New york :McGraw-Hill, 1979 : 134-137.
  • 3QING Tang-jiang,LI Zhong-peng. Toeplitz and Hankel Type Operators on the Upper half Plane[J]. Integral Equation and Operator Theory,1992, (15):744-767.
  • 4ZHU K H. Analytic Besov Spaces[J]. J Math Anal Appl,1991,157(2) :318-336.
  • 5GARNETT J. Bounded Analytic Functions[M]. New York:Acad Press,1981.

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部