期刊文献+

基于Zernike矩的人体行为识别 被引量:5

Recognition of Human Action Using Zernike Moment-based Features
在线阅读 下载PDF
导出
摘要 为了保证特征提取的有效性,更完备地描述人体行为序列,提出了一种基于Zernike矩的人体行为识别方法.该方法利用规范化的运动历史图像(MHI)进行图像序列的表示,从中提取出基于Zernike矩的统计描述作为特征向量进行识别.同时,提出了一种利用图像的重建过程确定分类时采用的Zernike矩的最高阶次的算法.实验中,对8类不同的人体行为进行了测试.应用Zernike矩特征的分类精度高于用规则矩和Hu矩作为特征的方法,证明了基于Zernike矩的人体行为识别方法的有效性. To ensure the validity and completeness of feature extraction, a new method of recognition of human action using Zernike moments-based features is introduced. In the proposed method, normalized motion history image for motion representation is valued. Statistical descriptions are then computed from motion history image using Zernike moment-based features for the following recognition. A systematic reconstruction- based method for deciding the highest order of Zernike moments required in a classification problem is developed. Experiments are conducted using instances of eight human actions(i, e. eight classes) performed by different subjects. Experiment results show that Zernike moment features for the recognition of human action are superior to regular moments and Hu monents in the accuracy of classification.
出处 《北京工业大学学报》 CAS CSCD 北大核心 2005年第4期423-426,433,共5页 Journal of Beijing University of Technology
基金 北京市自然科学基金资助项目(40031004)北京市教育委员会科技发展基金资助项目(km200310005006).
关键词 人体行为识别 运动历史图像 ZERNIKE矩 图像重建 human action recognition motion history image Zernike moments image reconstruction
  • 相关文献

参考文献7

  • 1AGGARWAL J, CAI Q. Human motion analysis: A review[J]. Computer Vision and Image Understanding, 1999, 73(3): 428-440.
  • 2POLANA R, NELSON R. Low level recognition of human motion[Z]. IEEE Workshop on Motion of Non-Rigid and Articulated Objects, Austin, TX, 1994.
  • 3DAVIS J, BOBICK A. The Representation and Recognition of Action Using Temporal Templates[R]. Technical Report, 402. Cambridge: MIT Media Lab, Perceptual Computing Group, 1997.
  • 4HU M. Visual pattern recognition by moment invariants[J]. IRE Trans on Information Theory, 1962, 8(2): 179-185.
  • 5ROMER Rosales. Recognition of Human Action Using Moment-Based Features[R]. Technical Report, BU 98-020. Boston: Boston University, 1998.
  • 6BELKASIM S O, AHMADI M, SHRIDHAR M. Efficient algorithm for fast computation of Zernike moments[J]. IEEE 39th Midwest Symposium on, 1996, 3: 18-21.
  • 7BOYCE J F, HOSSACK W J. Moment invariants for pattern recognition[J]. Pattern Recognition Lett, 1983, 1: 451-456.

同被引文献38

引证文献5

二级引证文献14

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部