期刊文献+

一种对电子商店中孤立点进行跟踪的算法

Algorithm for Trailing Outliers in Electronic Shopping
在线阅读 下载PDF
导出
摘要 在电子商店经营管理中,利用孤立点方法发现购买总金额持续减少或增加以后,应该立即采取跟踪服务。本文提出了一种跟踪算法,该算法采用最小二乘法对“购买总金额-时间”进行线性拟合,求出斜率,根据斜率的大小判断购买的趋势。并通过实际数据的验证说明该算法的有效性。 In the management of Electronic Shopping,a trail service strategy is adopted when it is discovered that the total sum of money is decreasing or increasing continnously by using outliers.A new trail algorithm is provided in a linearity fitting of 'total money-time' by method of least squares.Thus,the purchasing tendency can be predicted according to the slope.Some numerical examples have been provided to illustrate the efficiency of the provided algorithm.
作者 肖冰 邓飞其
出处 《河南科技大学学报(自然科学版)》 CAS 2005年第4期41-43,共3页 Journal of Henan University of Science And Technology:Natural Science
基金 国家自然科学基金资助项目(60374023)
关键词 电子商店 数据挖掘 异常客户 跟踪服务 Electronic shopping Data mining Specific client Trail service
  • 相关文献

参考文献8

二级参考文献29

  • 1Han J, Kamber M. Data Mining: Concepts and Techniques. Copyright by Morgan Kaufmann Publishers, Inc.2001.
  • 2Barnett V, Lewis T. Outliers in Statistical Data. New York: John Wiley &Sons, 1994.
  • 3Knorr E, Ng R. A Unified Notion of Outliers : Properties and Computation. In proc. 1997 Int. Conf. Knowledge Discovery and Data Mining(KDD97), Newport Beach,CA, 1997-08:219-222.
  • 4Knorr E, Ng R. Algorithms for Mining Distance-based Outliers in Large Datasets.In Proc. 1998 Int. Conf. Very Large Data Base(VLDB98), New York, 1998-08:392-403.
  • 5Aming A, Agrawal R, Raghavan P. A Linear Method for Deviation Detection in Large Database. In Proc. 1996 Int. Conf. Data Mining and Knowledge Discovery(KDD96), Portland, OR, 1996-08:164-169.
  • 6D Hawkins. Identification of Outliers. London: Chapman and Hall, 1980.
  • 7T Johnson, I Kwok, R Ng. Fast computation of 2-dimensional depth contours. In: Proc of the 4th Int'l Conf on Knowledge Discovery and Data Mining. New York: AAAI Press, 1998. 224-228.
  • 8E M Knorr, R T Ng. Algorithms for mining distance-based outliers in large datasets. In: Proc of the 24th Int'l Conf on Very Large Databases. New York: Morgan Kaufmann, 1998. 392-403.
  • 9D Yu, G Sheikholeslami, A Zhang. Findout: Finding outliers in very large datasets. Department of Computer Science and Engineering, State University of New York at Buffalo, Tech Rep:99-03, 1999. http://www. cse. buffalo. edu/tech-reports.
  • 10M Breunig, H Kriegel, R T Ng et al. LOF: Identifying densitybased local outliers. In: Proc of ACM SIGMOD Int'l Cortf on Management of Data. Dallas, Texas: ACM Press, 2000. 93-104.

共引文献197

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部