期刊文献+

关于级数的绝对收敛 被引量:3

On absolutely convergent series
在线阅读 下载PDF
导出
摘要 拓展了级数绝对收敛的概念.设(X,X′)是任意对偶系统,在X上找到了一个可容许拓扑τ,使得在(X,τ)上有界乘数收敛级数都是绝对收敛的,但是,当可容许拓扑τ′严格强于τ时,在(X,τ′)中,一定存在有界乘数收敛级数不是绝对收敛的.这个结果的建立主要借助于李容录的一致收敛引理[1]和Antosik-M ikus-insk i矩阵定理[2]. The concept of absolute convergence is generalized. For every dual pair (X,X′), There exists an admissible topology τ on X such that, in (X,τ), bounded multiplier convergent series are absolutely convergent but in (X,τ′), where the admissible topology τ′ is strictly stronger than τ, there exist bounded multiplier convergent series which are not absolutely convergent. This result is based on the Uniform Convergence Lemma of LI Rong-lu and Antosik-Mikusinski Basic Matrix Theorem.
作者 杨云燕
出处 《哈尔滨工业大学学报》 EI CAS CSCD 北大核心 2005年第8期1113-1115,共3页 Journal of Harbin Institute of Technology
关键词 绝对收敛 有界乘数收敛 等度连续 可容许拓扑 Antosik-Mikusinski矩阵定理 absolute convergence bounded multiplier convergence equicontinuity admissible topology Antosik-Mikusinski Matrix Theorem
  • 相关文献

参考文献6

  • 1LI R L, BU Q Y. Locally convex spaces containing no copy of c0 [J]. J Math Anal Appl, 1993, 172(1):205-211.
  • 2ANTOSIK P, SWARTZ C. Matrix methods in analysis[J]. Lecture Notes in Math Springer- Verlag, 1985,1113.
  • 3WILANSKY A. Modem Methods in Topological Vector Spaces [ M ]. New York:McGraw - Hill, 1978.
  • 4ROLEWICZ S. On unconditional convergence of linear operators [ J ]. Demonstratio Mathematica, 1988, 21 :835 - 842.
  • 5THORP B L D. Sequential-evaluation convergence [ J ].J London Math Soc, 1969,44:201 -209.
  • 6LI R L, SWARTZ C. Spaces for which the uniform boundedness principle holds [ J ]. Studia Sci Math Hungar, 1992,27:379-384.

同被引文献28

  • 1杨云燕,李容录.局部凸空间中的子级数收敛与绝对收敛[J].黑龙江大学自然科学学报,2006,23(3):322-325. 被引量:1
  • 2王富彬,李容录,钟书慧.一类算子序列赋值绝对收敛定理[J].黑龙江大学自然科学学报,2007,24(2):178-180. 被引量:2
  • 3WILANSKY A. Modem methods in topological vector spaces[ M ]. New York : McGraw-Hill, 1978 : 24-137.
  • 4SWARTZ C. Infinite matrices and the gliding hump[ M]. Singapore: World Scientific, 1996: 10-131.
  • 5KOTHE G. Topological Vector Spaces Ⅰ [M]. Berlin: Springer-Verlag, 1969: 128.
  • 6LI R, YANG Y, SWARTZ C. A general Orlicz-Pettis theorem[J]. Studia Sci Math Hungarica, 2006, 43(1): 47-60.
  • 7WU J, LU S. A general Orlicz-Pettis theorem[J]. Taiwan Residents J Math, 2002(6) : 433-440.
  • 8LI R, BU Q. Locally convex spaces containing no copy of c0[J]. J Math Anal Appl, 1993, 172(1): 205-211.
  • 9ROLEWICZ S. Metric linear spaces[M]. Warsaw: Polish Scientific Publishers, 1984: 155-315.
  • 10Robinson'A.On functional transformations and summability[J].Proc London Math Soc,1950,52:132-160.

引证文献3

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部