期刊文献+

喷射沉积坯体特征尺寸的神经网络模型建立与仿真 被引量:4

Neural Network Modeling and Simulation of Characteristic Dimension of Spray Deposited Preform
在线阅读 下载PDF
导出
摘要 采用神经网络技术建立了沉积坯特征尺寸模型,该模型描述了喷射成形关键工艺参数对沉积坯尺寸的影响规律,模型输出的相对误差为6.58%,RM S(均方差)为0.372mm。模型的仿真结果给出了沉积坯尺寸的变化规律,其中稳态仿真结果可用于预先确定喷射实验中所采用的合适工艺参数;而动态仿真结果表明,雾化气体压力和沉积器平移速度对沉积坯几何尺寸都有较大影响,其中沉积器平移速度具有调节范围大的优点,成为调节沉积坯几何尺寸较合适的工艺参数。 Neural network technology was applied to establish a modeling of the characteristic dimension of spray deposited preform, which described the influence of the spray forming parameters on the deposit dimension. The relative error of the modeling output was 6.58% and the RMS (root-mean-square) was 0. 372mm. The relationship between deposit characteristic dimension and processing parameters was given by simulation results of the neural network modeling, and suitable parameters were defined according to simulation results of static spray forming processes; the simulation results of dynamic spray forming processes showed both atomizing gas pressure and translating speed of substrate were important factors influencing deposit characteristic dimension. Furthermore, it was preferred that the translating speed could be adjusted in a wide range, and became more suitable and effective parameter to control deposit dimension.
出处 《材料工程》 EI CAS CSCD 北大核心 2005年第8期15-19,共5页 Journal of Materials Engineering
基金 金属精密热加工国家重点实验室开放课题资助项目(51471040101JW0301) 国家自然科学基金资助项目(50174022)
关键词 喷射成形 神经网络模型 沉积坯 特征尺寸 spray forming neural network modeling deposit characteristic dimension
  • 相关文献

参考文献9

  • 1范洪波,曹福洋,崔成松,沈军,李庆春.喷射成形锭材三维动态成形模型及工艺参数领测[J].中国机械工程,1999,10(2):188-191. 被引量:4
  • 2黄战华,孙达志,蔡怀宇,张以谟.基于固定扫描点的建筑物三维测量方法[J].光电工程,2003,30(1):50-52. 被引量:22
  • 3XU Q,LAVERNIA E J.Spray deposition and melt atomization[C].Bremen,Germany:SDMA,2000.17—36.
  • 4Chengsong CUI, Zhenyu LI, Fuyang CAO and Qingchun LI (School of Materials Science and Engineering, Harbin Institute of Technology, 150001, China).Modeling of the Shape Forming of Composite Roll[J].Journal of Materials Science & Technology,2000,16(3):337-340. 被引量:2
  • 5MUHANAD N, MEDWELL J O ,GETHIN D T. Model for predicting buildup of cylindrical billets in osprey preform process[J].Power Metallurgy, 1995, 38 (3): 214--220.
  • 6PAYNE R D, MATTESON M A, MORAN A L. Application of neural networks in spray forming technology [J] . International Journalof Power Metallurgy, 1993, 29 (4): 345-351.
  • 7PAYNE R D, REBIS R E, MORAN A L. Spray forming quality prediction via neural network[J]. Journal of Materials Engineeringand performance, 1993, 2 (5): 693--702.
  • 8GHOSAL S, MEHROTRA R. Orthogonal moment operators for subpixel edge detection [J]. Pattern Recognition, 1993, 26(2): 295--306.
  • 9焦李成.神经网络理论系统[M].西安:西安电子科技大学出版社,1996.6-13.

二级参考文献7

共引文献24

同被引文献27

引证文献4

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部