摘要
对C ̄n空间中具有逐块C ̄(1)光滑可定向边界D的有界域D和著名的Cauchy-Fantappie公式,本文定义一类与Bochner-Martinelli核同伦等价的C-F核Ω,应用同伦方法证明具有Holder密度的相应奇异积分F(t)存在哥西主值和C-F型积分F(z)存在满足Holder条件的内、外极限值F ̄+(t)和F ̄-(t);同时建立一个更一般的含有边界上点t的立体角系数α(t)的Plemelj公式。
For the bounded domain D in the space C ̄n with orientable piecewise smooth bound-ary D of class C ̄(1),and the well known Cauchy-Fantappie integral formula, the author definesakind of Cauchy-Fantappie kernel Ω which is homotopy equivalent to Bochner-Martinelli kernel.and uses homotopy method to prove that the singular integraI F(t) with kernel Ω and Holdercontinuity density f (t) possess Cauchy principal value and the C-F type integral F(z) possessinner and outer limit value F ̄+(t)and F(t)satisfying the Holder condition; and the authorest ablishes a more general Plemelj formula which involves a solid angle coefficient α(t)at thepoint t ∈D。
出处
《数学学报(中文版)》
SCIE
CSCD
北大核心
1995年第1期13-23,共11页
Acta Mathematica Sinica:Chinese Series
基金
国家自然科学基金资助项目
关键词
多复变数
边界性质
C-F积分
光滑流形
several complex variables,Cauchy-Fantappie type integral,Homotopy equivalence。Boundary behaviour