期刊文献+

基于动态参数的微粒群算法(PSO)的研究 被引量:5

The study of particle swarm optimization(PSO)based on dynamic parameter
在线阅读 下载PDF
导出
摘要 标准的PSO算法一般不能兼顾收敛速度、全局探索能力和局部精细搜索能力.本文通过同时动态调整惯性权重和加速度权重以平衡运算性能,并通过寻找LevyNo.5函数极值加以验证.结果表明,与标准的固定参数PSO算法相比,该方法取得了更好的效果. The normal PSO algorithm can not attend to convergence speed ,capability of exploitation and exploration synchronously.The performance of PSO is improved by modifying the inertia weight and the acceleration weight dynamically, and is validated by searching the extremum of LevyNo. 5 function. The results show that this method gets a better effect in comparison with the normal PSO of fixed parameters.
出处 《天津理工大学学报》 2005年第4期42-44,共3页 Journal of Tianjin University of Technology
基金 天津市自然科学基金重点项目(033803311) 天津市教委科技发展基金资助项目(020616 20041705).
关键词 微粒群算法 函数优化 动态参数 particle swarm optimization function optimization dynamic parameter
  • 相关文献

参考文献7

  • 1Van den Bergh, Engelbrecht A. Using neighborhood with the guaranteed convergence PSO[ R]. USA: IEEE Swarm Intelligence Symposium, 2003. 235-242.
  • 2刘康,余玲.一种仿生优化方法—微粒群算法[J].四川轻化工学院学报,2003,16(1):1-4. 被引量:9
  • 3Van den Bergh, Engelbrecht A. A new locally convergent particle swarm optimizer [ R ]. USA: IEEE International Conference on Systems, Man, and Cybernetics, 2002. 246- 250.
  • 4Kang-Ping Wang, Lan Huang, Chun-Guang Zhou. Particle swarm optimization for traveling sales-man problem[ R]. Xi' an:Proceedings of the 2nd International Conference on Machine Learning and Cybernetics. 2003. 1583- 1585.
  • 5Parsopoulos K E, Vrahatis M N. Recent approach to global optimization problems through particle swarm optimization [ J ].Natural Computing, 2002, 1(2) : 235 - 306.
  • 6Parsopoulos K E, Vrahatis M N. Particle swarm optimization method in multiobjectice Problems. Proceedings ACM Symposium on Applied Computing (SAC 2002). 2002, 603- 607.
  • 7谢晓锋,张文俊,杨之廉.微粒群算法综述[J].控制与决策,2003,18(2):129-134. 被引量:424

二级参考文献36

  • 1余玲.圆柱齿轮传动设计智能CAD系统的研究与开发:硕士学位论文[D].西南交通大学,1995.
  • 2[31]Eberhart R, Hu Xiaohui. Human tremor analysis using particle swarm optimization[A]. Proc of the Congress on Evolutionary Computation[C].Washington,1999.1927-1930.
  • 3[32]Yoshida H, Kawata K, Fukuyama Y, et al. A particle swarm optimization for reactive power and voltage control considering voltage security assessment[J]. Trans of the Institute of Electrical Engineers ofJapan,1999,119-B(12):1462-1469.
  • 4[33]Eberhart R, Shi Yuhui. Tracking and optimizing dynamic systems with particle swarms[A]. Proc IEEE Int Conf on Evolutionary Computation[C].Hawaii,2001.94-100.
  • 5[34]Prigogine I. Order through Fluctuation: Self-organization and Social System[M]. London: Addison-Wesley,1976.
  • 6[1]Kennedy J, Eberhart R. Particle swarm optimization[A]. Proc IEEE Int Conf on Neural Networks[C].Perth,1995.1942-1948.
  • 7[2]Eberhart R, Kennedy J. A new optimizer using particle swarm theory[A]. Proc 6th Int Symposium on Micro Machine and Human Science[C].Nagoya,1995.39-43.
  • 8[3]Millonas M M. Swarms Phase Transition and Collective Intelligence[M]. MA: Addison Wesley, 1994.
  • 9[4]Wilson E O. Sociobiology: The New Synthesis[M]. MA: Belknap Press,1975.
  • 10[5]Shi Yuhui, Eberhart R. A modified particle swarm optimizer[A]. Proc IEEE Int Conf on Evolutionary Computation[C].Anchorage,1998.69-73.

共引文献428

同被引文献30

引证文献5

二级引证文献13

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部