期刊文献+

最大流问题的DNA计算两阶段法 被引量:11

DNA algorithm with two phases for maximum flow
在线阅读 下载PDF
导出
摘要 给出了最大流问题的DNA计算两阶段法:第一阶段采用路序问题DNA算法得到包括所有增广路的路集,算法有两点改进,即采用等码长编码和不进行排序,这减少了生化实验时间.第二阶段算法思路是:设置一个逐步减小的增量Δ,对每个确定的Δ值从第一阶段得到的路集中寻找并增广容量不小于Δ值的增广路,对整数容量网络,当Δ<1时获得最大流.证明了算法的正确性和复杂性,并指出在以增广路为基础的最大流算法中,本算法复杂度最低,这说明DNA计算和电子计算相结合的巨大优势. DNA algorithm with two phases for maximum flow problem was put forward In first phase the DNA algorithm of arranging path to obtain path set including all augmenting paths for every flows. Differing from the former of this DNA algorithm is to encode of equal DNA's length and not to arrange paths which can reduce time of the experiment of biochemistry. The secondly phase was to design an increment △ which decrease step by step, and for any fixed value of △, finding out from path set and the augmenting path whose capability not less than the value of △. When △〈 1, maimum flow is obtained for integer capability network. The validity and the complexity of the DNA algorithm were proved. It was also pointed that the complexity of this algorithm is minimum in all algorithms based on augmenting path, showing that there is huge advantage to combine with DNA computing and electronic computing.
出处 《华中科技大学学报(自然科学版)》 EI CAS CSCD 北大核心 2005年第8期104-107,共4页 Journal of Huazhong University of Science and Technology(Natural Science Edition)
基金 武汉工业学院校立科研项目资助项目(04-D-05)
关键词 最大流 DNA计算 △松弛网络 增广路 maximum flow DNA computing △-relaxation network augmenting path
  • 相关文献

参考文献8

  • 1Adleman L M. Molecular computation of solutions to combinatorial problems[J]. Science, 1994, 266( 11 ) :1 021-1 024.
  • 2Frank G, Makiko F, Carter B. Making DNA add[J].Science, 1996, 273( 11 ) : 220-223.
  • 3Olive J S. Computation with DNA: Matrix multiplication[J ]. DIAMACS Series in Discrete Mathematics and Theoritical Computer Science, 1999, 44:113-121.
  • 4Lipton R J. DNA mlution of hard computational problem[J]. Science, 1995, 268(28): 542-545.
  • 5Head T, Rozenberg G, Bladergroen R B, et al. Computing with DNA by operating on plasmids[J ]. Biosystems, 2000, 57. 87-93.
  • 6Pan Linqiang, Xu Jin, Liu Yachun. A surface-based DNA algorithm for the maximal clique problem [ J ].Chinese Journal of Electronics, 2002, 11 ( 4 ) : 469-471.
  • 7Yin Zhixiang, Zhang Fengyue, Xu Jin. A DNA solution of 0-1 problem[J ]. Journal of Electronic and Information, 2003, 15(1): 1-5.
  • 8周康,同小军,许进.路径排序问题基于表面的DNA算法[J].华中科技大学学报(自然科学版),2005,33(8):100-103. 被引量:16

二级参考文献9

  • 1Adleman L M. Molecular computation of solutions to combinatorial problems[J ]. Science, 1994, 266( 11 ) :1 021-1 024.
  • 2Frank G, Makiko F, Carter B. Making DNA add[J].Science, 1996, 273(11) :220-223.
  • 3Olive J S. Computation with DNA: Matrix multiplication[J]. DIAMACS Series in Discrete Mathematics and Theoritical Computer Science, 1999, 44, 113-121.
  • 4Lipton R J. DNA solution of hard computational problem[J]. Science, 1995, 268(28): 542-545.
  • 5Ouyang Qi, Kaplan P D, Liu Shumao, et al. DNA solution of the maximal clique problem [J ]. Science,1997, 278(17) : 446-449.
  • 6Head T, Rozenberg G, Bladergroen R B, et al. Computing with DNA by operating on plasmids[J ]. Biosysterns, 2000, 57:87-93.
  • 7Pan Linqiang, Xu Jin, Liu Yachun. A surface-based DNA algorithm for the maximal clique problem [ J ].Chinese Journal of Electronics, 2002, 11 ( 4 ) : 469-471.
  • 8Yin Zhixiang, Zhang Fengyue, Xu Jin. A DNA solution of 0-1 problem[J]. Journal of Electronic and Information, 2003, 15(1): 1-5.
  • 9运筹学编写组.运筹学(修订版)[M].清华大学出版社,1990..

共引文献15

同被引文献63

引证文献11

二级引证文献64

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部