期刊文献+

纳米ZnO脱硫剂表面结构与室温脱除H_2S性能的研究 被引量:28

ZnO Nanoparticles: Surface Structure and Desulfurization Performance for H_2S at Room Temperature
在线阅读 下载PDF
导出
摘要 采用均匀沉淀法制备纳米ZnO,经260℃,360℃,460℃和550℃焙烧制备的纳米ZnO均具有六方纤锌矿结构,平均粒径分别为14.3nm,21.2nm,24.1nm和35.3nm。通过TEM、TPR、XRD和XPS等技术对脱硫剂进行了表征。结果表明,纳米ZnO提高了对H2S的室温去除率,室温脱除H2S的活性时间是分析纯ZnO的近40倍;其脱硫性能随粒径增大,氧空位减少而下降,脱硫后高结合能的硫物种增多,硫取代晶格氧的趋势增大。说明粒径大小和氧空位是纳米ZnO室温脱硫的主要影响因素。纳米ZnO(14.3nm)可直接将H2S选择氧化为单质硫,尾气中未见SO2产生。 The ZnO nanoparticles were prepared by homogeneous deposition. The ZnO nanoparticles thus prepared after calcination at 260 degrees C, 360 degrees C, 460 degrees C and 550 degrees C were with hexagonal wurtzite structure. The average particle size was 14.3 nm, 21.2 nm, 24.1 nm and 35.3 nm, respectively. The desulfurzation agent was characterized by TEM, TPR, XRD and XPS before and after desulfurization reaction, respectively. It is concluded that the ZnO nanoparticles improve the efficiency of H2S desulfurization at low temperature. The life time for H2S desulfurization at room temperature was about 40 times that of analytical pure ZnO. The performance of ZnO nanoparticles for desulfurization was decreased with the increase in particle size and decrease in oxygen vacancy sulfur species with higher binding energy increased, and the tendency for sulfur to substitute crystal matrix oxygen became significant after desulfurization. It is demonstrated that the size and oxygen vacancy are the main factors influncing the performance of desulfurization at low temperature. ZnO nanoparticles (14.3 nm) could oxidize H2S into elemental sulfur selectively. The product of SO2 was not observed in the end gases.
出处 《无机化学学报》 SCIE CAS CSCD 北大核心 2005年第8期1149-1154,共6页 Chinese Journal of Inorganic Chemistry
基金 国家自然科学基金资助项目(No.50478026) 水质科学与水环境恢复工程北京市重点实验室开放研究基金资助项目。
关键词 纳米ZNO 室温 脱硫 单质硫 ZnO nanoparticles room temperature desulfurization elemental sulfur
  • 相关文献

参考文献12

  • 1Keller N, Pham-Huu C, Estournes C, et al. Applied Catalysis A: General., 2002,234:191-205
  • 2王睿.磷钼杂多化合物湿法氧化脱硫动态特性研究[J].燃料化学学报,2001,29(2):159-164. 被引量:7
  • 3王丽,李福林,吴迪镛,王树东,袁权.催化水解-氧化耦合一步法脱除二硫化碳的研究[J].燃料化学学报,2004,32(4):466-470. 被引量:10
  • 4Pineda M, Palacios J M, Alonso L, et al. Fuel., 2000,79:885-895
  • 5Dijken A V, Meulenkamp E A, Vanmaekelbergh D, et al. J.Chem., 2000,104:1715-1723
  • 6WEI Jun-Jie(魏俊梅), XU Bai-Qing(徐柏庆), LI Jin-Lu(李晋鲁), et al. Gaodeng Xuexiao Huaxue Xuebao(Chem. J. Chinese Universities), 2002,23:92-97
  • 7Rodriguez J A, Jirsak T, Chaturvedi S, et al. Surface Science,1998,407:171 - 188
  • 8Chaturvedi S, Rodriguez J A, Hrbek J. J. Phys. Chem. B.,1997,101:10860-10869
  • 9Steijns M, Mars P. J. Catal., 1974,35:11-19
  • 10Steijns M, Mars P. Ind. Ing. Chem. Prod. Res. Dev., 1977,16(1):35-41

二级参考文献16

  • 1孔渝华,王国兴,李增敏,王先厚,李小定.常温精脱硫工艺的新进展及其应用[J].中氮肥,1995(2):8-11. 被引量:14
  • 2R N马道克斯 朱利凯等(译).天然气预处理和加工(第四卷),气体与液体脱硫[M].北京:石油工业出版社,1990.40-45.
  • 3刘金盾 方文骥.磺化木质素吸收硫化氢动力学[J].化学工程,1988,16(6):29-36.
  • 4Wang Rui,Petroleum Sci,1999年,1卷,1期,43页
  • 5Wang Rui,Advances in Separation Science and Technology Proceedings of the Second China-Korea Conference on Se,1998年,180页
  • 6梁娟,催化剂新材料,1990年,74页
  • 7朱利凯(译),天然气预处理和加工.4,1990年,40页
  • 8刘金盾,化学工程,1988年,16卷,6期,29页
  • 9TONG S, DALLAN L G, CHUANG K T. Appraisal of catalysts for the hydrolysis of carbon disulfide[J]. Can J Chem Eng, 1992, 70(3): 516-522.
  • 10PECHLER N, EMIG G. Adsorptive purification of large waste gas streams[J]. Gas Separation & Purification, 1991, 5(4): 247-251.

共引文献14

同被引文献296

引证文献28

二级引证文献128

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部