摘要
考虑如下的2阶非线性方程的边值问题:x″=λ(Ax+Bx′)+f(t,x,x′,λ)(0≤t≤1),x(0)=x(l)=0.在关于A,B,f的一组条件下,利用Krasnoselskii定理证明了上述问题存在分歧点。
A boundary value problem of second order nonlinear differential equation,x″=λ(Ax +Bx′)+f(t,x,x′λ)(0≤t≤l),x(0) =x(l )=0 is investigated.Under certain conditionson A,B andf,it is proved that there exists a bifurcation point.The main tool iised is theKrasnoselskii theorem for local bifurcations. Two special cases of importance are studied andspecific corollaries are obtained.
出处
《华中理工大学学报》
CSCD
北大核心
1994年第1X期177-182,共6页
Journal of Huazhong University of Science and Technology