期刊文献+

基于LWT的纹理特征提取方法 被引量:4

A Texture Feature Extraction Method Based on Local Walsh Transform
在线阅读 下载PDF
导出
摘要 介绍了一种利用局部沃尔什变换(LWT)提取图像纹理特征的新方法,给出LWT的定义,并分析了LWT系数的统计特性及其各阶矩的纹理鉴别性能。结果表明:自然纹理图像的LWT系数一般不服从正态分布,其偶数阶矩具有较好的纹理鉴别性能,奇数阶矩的纹理鉴别性能较差,因此选取LWT系数的偶数阶(2、4、6阶)矩作为纹理特征。与Haralick[1]、Wang和He[2,3],以及HuiYu[5]等人提出的纹理特征相比,基于LWT的纹理特征具有更好的鉴别性能,并且计算简单。 <Abstrcat>A new texture feature extraction method using Local Walsh Transform (LWT) is presented. The definition of LWT is given. The statistical properties of LWT coefficients are analyzed. The texture discrimination performance of the moments of LWT coefficients are investigated. Detail examinations reveal that the LWT coefficients of the natural texture images usually do not yield to Gauss distribution, their even-order moments have high texture discrimination performance, while their odd-order moments have low texture discrimination performance. Hence, the even-order (2^(nd), 4^(th), 6^(th) order) moments of the LWT coefficients are selected as texture features. Compared with the other texture features defined by Haralick^([1]),Wang and He^([2,3]), Hui Yu^([5]), the texture features we present have the best texture discrimination performance.
出处 《国防科技大学学报》 EI CAS CSCD 北大核心 2005年第3期86-91,共6页 Journal of National University of Defense Technology
基金 国家部委基金项目资助(41303040204)
关键词 沃尔什变换 纹理特征 纹理分析 图像处理 模式识别 Walsh transform texture features texture analysis image processing pattern recognition
  • 相关文献

参考文献8

  • 1Haralick R M, Shanmugam K, DinStein I. Texture Features for Image Classification[J]. IEEE Trans. Systems Man Cybernet, 1973,SMC-3:610- 621.
  • 2Wang L,He D C. Texture Classification Using Texture Spectrum[J]. Pattern Recognition,1990,(23):905-910.
  • 3He D C,Wang L. Texture Features Based on Texture Spectrum[J]. Pattern Recognition,1991,(24):391-399.
  • 4Zhou F,Feng J,Shi Q. Image Segmentation Based on Local Fourier Coefficients Histogram[A]. Proc. SPIE 2nd Int. Conf. on Multispectral Image Proc essing and Pattern Recognition[C], Wuhan, China, November, 2001.
  • 5Yu H, Li M J, Zhang H J, et al. Color Texture Moments for Content Based Image Retrieval[R]./www.cs.iupui.edu/~tuceryan/research/ComputerVision/moment-paper.pdf.
  • 6Grigeorescu S E, Petkov N, Kruizinga P. Comparison of Texture Features Based on Gabor Filters[J]. IEEE Trans. on Image Processing, 2002, 11(10):1160-11 67.
  • 7孙即祥.数字图像处理[M].石家庄:河北教育出版社,1993..
  • 8盛骤 谢式千 潘承毅.概率论与数理统计[M].北京:高等教育出版社,1989..

共引文献241

同被引文献43

  • 1李晖晖,郭雷,刘航.基于二代curvelet变换的图像融合研究[J].光学学报,2006,26(5):657-662. 被引量:89
  • 2HAN Y F,SHI P F.An adaptive level-selecting wavelet transform for texture[J].Image and Vision Computing,2007,25(1):1239-1248.
  • 3OJALA T,PIETIKAINEN M.Unsupervised texture segmentation using feature distributions[J].Pattern Recognition,1999,32(2):477-486.
  • 4OJALA T,PIETIKAINEN M,MAENPAA T.Multiresolution gray-scale and rotation invariant texture classification with local binary patterns[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2002,249(17):971-987.
  • 5HEIKKILA M,PIETIKAINEN M,SCHMID C.Description of interest regions with local binary patterns[J].Pattern Recognition,2009,42(1):425-436.
  • 6AHONEN T,HADID A,PIETIKAINEN M.Face description with local binary patterns:application to face recognition[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2006,28(12):2037-2041.
  • 7ZHOU H,WANG R S,WANG C.A novel extended local-binary-pattern operator for texture analysis[J].Information Sciences,2008,178(2):4314-4325.
  • 8NASSIRI M J,VAFAEI A,MONADJEMI A.Texture feature extraction using Slant-Hadamard transform[C].Proceeding of World Academy of Science,Engineering and Technology,2006,17:40-44.
  • 9POESIO P.Walsh spectral analysis of binary signals arising from intermittent two-phase flows[J].International Journal of Multiphase Flow,2008,34(1):516-522.
  • 10HONEYCUTT C E,PLOTNICK R.Image analysis techniques and gray-level co-occurrence matrices(GLCM) for calculating bioturbation indices and characterizing biogenic sedimentary structures[J].Computers & Geosciences,2008,34(1):1461-1472.

引证文献4

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部