期刊文献+

基于感兴趣区的均匀B样条曲面多分辨率小波表示 被引量:2

The Wavelet Representation of Multiresolution Uniform B-Spline Surface Based on Region of Interest
在线阅读 下载PDF
导出
摘要 对均匀B样条曲面的多分辨率小波表示进行了讨论,给出了双正交的均匀三次B样条小波两尺度关系的构造过程.针对感兴趣区域和背景区域,提出了采用不同的分辨率来表示均匀B样条曲面的具体方法.实例分析表明,该表示方法能够有效地减少复杂曲面存储所需的空间和提高曲面的显示速度,也更加方便了曲面的多分辨率编辑. The principles and methods of realizing wavelet multiresolution representation of uniform cubic B-spline curves and surfaces were introduced. For region of interest and background region a method was proposed, which is used to represent the uniform B-spline surfaces by different resolution. The practical example shows that the display speed of surfaces can be greatly improved by this method and it is extremely useful for storage or multiresolution editing of surfaces.
作者 续爱民 金烨
出处 《上海交通大学学报》 EI CAS CSCD 北大核心 2005年第6期960-963,968,共5页 Journal of Shanghai Jiaotong University
关键词 曲面 均匀B样条 多分辨率 小波 感兴趣区 surface uniform B-spline multiresolution wavelets region of interest(ROI)
  • 相关文献

参考文献9

  • 1Reissell L M. Wavelet multiresolution representation of Curves and surfaces[J].Graphical Models and Image Processing.1996,58(3):198—217.
  • 2赵罡,穆国旺,朱心雄.基于小波的准均匀B样条曲线曲面变分造型[J].计算机辅助设计与图形学学报,2002,14(1):61-65. 被引量:18
  • 3Finkelstein A,Salesin D H.Multiresolution curves[A]. Computer Graphics Proceedings,Annual Conference Series,ACM SIGGRAPH[C].NewYork:ACM Press,1994:261—268.
  • 4Lee S L.Spline interpolation and wavelet construction[J].Applied and Computational Harmonic Analysis.1998,5:249—276.
  • 5Cohen A,Daubechies I,Feauveau J C.Biorthogonal bases of compactly supported wavelets[J].Communications on Pure and Applied Mathematics·1992,45:485—560.
  • 6程正兴.小波分析与算法[M].西安:西安交通大学出版社,2001..
  • 7Gortler S J。Cohen M F.Hierarchical and variational geometric modeling with wavelets[A].Proceedings of the Symposium on Interactive 3D Graphics[C].Monterey,California:ACM Press,1995.35—42.
  • 8Askelof J,Carlander M L,Christopoulos C.Region of interest coding in JPEG 2000 [J].Signal Processing:Image Communication,2002,17(1):105—111.
  • 9Keinert,Fritz,Kwon,et a1.High accuracy reconstruction from wavelet coefficients[J].Applied and Computational Harmonic Analysis,1997,4(3):293—316.

二级参考文献10

  • 1[1]Welch W, Witkin A. Variational surface modeling[J]. Computer Graphics, 1992, 26(2):157~166
  • 2[2]Terzopoulos D. Image analysis using hierarchical basis functions[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1986, 8(2):129~139
  • 3[3]Celniker G, Gossard D. Deformable curve and surface finite-elements for free-form sharp design[J]. Computer Graphics, 1991, 25(4):257~266
  • 4[4]Szeliski R. Fast surface interpolation using hierarchical basis functions[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1990, 12(6):513~528
  • 5[5]Wesselink W, Veltkamp R C. Interactive design of constrained variational curves[J]. Computer Aided Geometric Design, 1995, 12(5):533~546
  • 6[6]Greiner G, Loos J, Wesselink W. Data dependent thin plate energy and its use in interactive surface design[J]. Computer Graphics Forum, 1996, 15(3):175~185
  • 7[7]Gortler S J, Cohen M F. Hierarchical and variational geometric modeling with wavelets[A]. In: Proceedings of the 1995 Symposium on Interactive 3D Graphics, ACM, New York, 1995. 35~42
  • 8[8]Quak E, Weyrich N. Decomposition and reconstruction algorithms for spline wavelets on a bounded internal[J]. Applied and Computational Harmonic Analysis, 1994, 1(3):217~231
  • 9[9]Frinkelstein A, Salesin D H. Multiresolution curves[A]. In: Computer Graphics Proceedings, Annual Conference Series, ACM SIGGRAPH[C], New York: ACM Press, 1994. 261~268
  • 10[10]Forsey D, Bartels R. Hierarchical B-spline refinement[J]. Computer Graphics, 1988, 22(4):205~212

共引文献17

同被引文献17

  • 1柯映林,李奇敏.基于非均匀B样条小波分解的NURBS曲线光顺[J].浙江大学学报(工学版),2005,39(7):953-956. 被引量:8
  • 2纪小刚,龚光容.半正交B样条小波及其在曲线曲面光顺中的应用[J].机械工程学报,2006,42(9):54-60. 被引量:7
  • 3Bertram M. Single-knot wavelets for non-uniform B spline [J]. Computer Aided Geometric Design, 2005, 22 (9) : 849- 864.
  • 4Pan R J, Yao Z Q. Biorthogonal nonuniform B-spline wavelets based on a discrete norm [J]. Computer Aided Geometric Design, 2009, 26(4): 480-496.
  • 5Chui C K. An introduction to wavelets [M]. San Diego: Academic Press, 1992.
  • 6Chui C K, Quak E. Wavelets on a bounded interval [M] // Braess D, Schumaker L L. Numerical Methods of Approximation Theory, vol 9. Basel: Birkh/iuser Verlag, 1992:53-75.
  • 7Finkelstein A, Salesin D H. Multiresolution curves [C]// Computer Graphics Proceedings, Annual Conferences Series, ACMSIGGRAPH. New York: ACMPress, 1994:261-268.
  • 8Stollnitz E J, Derose T D, Salesin D H. Wavelets for computer graphics [M]. San Francisco: Morgan Kaufmann, 1996.
  • 9Narayanaswami R, Yan J. Muhiresolution modeling techniques in CAD[J]. Computer Aided Design, 2003, 35(3): 225-240.
  • 10Yin J X, Chen G L, Lin Z Q. New muhiresolution modeling techniques in CAD [J]. Computer-Aided Design, 2006, 38 (2): 134-142.

引证文献2

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部