期刊文献+

基于离散余弦变换和小波变换的电能质量扰动信号检测方法 被引量:35

DETECTION AND ANALYSIS OF POWER QUALITY DISTURBANCE SIGNAL BASED ON DISCRETE COSINE TRANSFORM AND WAVELET TRANSFORM
在线阅读 下载PDF
导出
摘要 综合离散余弦变换和小波变换模极大值原理在时频分析中的优点,提出了基于离散余弦变换和小波变换的电能质量扰动信号检测方法。先通过离散余弦变换检测出各种基频干扰(电压暂降、电压暂升和电压间断)和各次谐波(包括暂态谐波),再利用小波变换模极大值原理检测出暂态振荡和暂态脉冲,并实现扰动时间和扰动幅值的测定。该方法具备较强的抗噪能力,仿真结果验证了该方法的有效性。 Synthesizing respective advantages of discrete cosine transform (DCT) and wavelet transform (WT) module maximum in time domain analysis, a DCT and WT based power quality disturbance signal detection method is proposed. In this method firstly the fundamental frequency disturbances, including voltage sag, voltage swell and voltage interruption, and the harmonics in different orders involving transient harmonics are detected, then transient oscillation and transient pulses are detected by use of WT module maximum, and the measurement of duration and amplitude of the disturbances are ascertained. The proposed method possesses better noise proof ability, and its effectiveness is verified by simulation.
出处 《电网技术》 EI CSCD 北大核心 2005年第10期70-74,共5页 Power System Technology
关键词 电力系统 输配电工程 电能质量 离散余弦变换 时频分析 噪声鲁棒性 小波变换 模极大值 Computer simulation Electric potential Frequencies Signal processing Spurious signal noise Time domain analysis Wavelet transforms
  • 相关文献

参考文献9

二级参考文献49

  • 1崔锦泰 程正兴(译).小波分析导论[M].西安:西安交通大学出版社,1995..
  • 2崔锦泰.小波分析导论(The Principle of Wavelet Analysis)[M].西安:西安交通大学出版社(Xi''an:Xi''an Jiaotong University Press),1995..
  • 3[1]Angrisani L, Daponte P, Apuzzo M D. A measument method based on the wavelet transform for power quality analysis[J]. IEEE Trans Power Delivery, 1998, 13(4):990-998.
  • 4[2]Huang S J, et al. Application of morlet wavelets to supervise power system disturbances[J]. IEEE Trans Power Delivery, 1999, 14(1):235-243.
  • 5[3]Gaouda A M,et al. Power quality detection and classification using wavelet-multiresolution signal decomposition[J].IEEE Trans. Power Delivery, 1998, 14(4):1469-1476.
  • 6[4]Application of multiresolution signal decomposition for monitoring short-duration variations in distribution systems[J]. IEEE Trans Power Delivery, 2000, 15(2):478-485.
  • 7[5]Santoso S, Powers E J, et al. Power quality disturbance waveform recognition using wavelet-based neural classifier?Part 1: theoretical foundation, Part 2: application[J]. IEEE Trans Power Delivery, 2000, 15(1):222-235.
  • 8[6]Poisson O, Rioual P, Meunier M. Detection and measurement of power quality disturbances using wavelet transform[J].IEEE Trans Power Delivery, 2000, 15(3):1039-1044.
  • 9[7]Karimi M, Mokhtari H, Iravani R. Wavelet based on-Line disturbance detection for power quality applications[J]. IEEE Trans Power Delivery, 2000, 15(4):1212-1220.
  • 10[8]Vetterli M, Herley C, Wavelets and filter banks: theory and design[J]. IEEE Trans Signal Process, 1992, 40(9):2207-2232.

共引文献380

同被引文献304

引证文献35

二级引证文献494

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部