期刊文献+

关联规则挖掘与因果关系发现的比较研究 被引量:7

A Comparison between Association Rule Data Mining and Causal Discovery
原文传递
导出
摘要 关于关联规则挖掘和因果关系发现之间的关系,较为全面地分析比较结果目前尚不多见。本文在说明关联规则与因果规则各自特点的基础上,从方向性、对人类行为的指导意义以及如何将他们联系起来三个方面进行了理论上的分析比较。分析结果表明因果发现能够找出事物间的内在机制性联系,并且可以据此对关联规则进行推理和检验。最后,将两种数据挖掘方法应用于一个人口统计数据集,并比较了挖掘结果,从而进一步验证理论分析的结论。 Association rule data mining and causal discovery are two important data processing methods, but the comparison research between them is scarce now. Based on the description and analysis of the characteristics of association rules and causal rules, this work compares them theoretically in three aspects: directivity, guldance to the human behaviors, deduction and induction between them. The result shows that the intrinsic mechanic relationships between things can be obtained by the causal discovery, then we can predict the association rules based on it. Finally, this two kinds of data mining methods are applied to a real census income data set. The compared mining result validates the anterior analysis result.
出处 《模式识别与人工智能》 EI CSCD 北大核心 2005年第3期328-333,共6页 Pattern Recognition and Artificial Intelligence
基金 国家自然科学基金(No.60172037) 教育部"跨世纪优秀人才培养计划"基金
关键词 数据挖掘 关联规则 因果发现 Data Mining Association Rule Causal Discovery
  • 相关文献

参考文献17

  • 1Agrawal R, lmielinski T, Swami A. Mining Association Rules between Sets of Items in Large Database. In: Proc of the ACM SIGMOD Conference on Management of Data. Washington,USA, 1993, 207-216.
  • 2韩家炜 范明 等.数据挖掘概念与技术[M].北京:机械工业出版社,2001,8..
  • 3赵亮,王培康.关联规则发现:综述[J].计算机工程与应用,2001,37(8):94-96. 被引量:21
  • 4蔡伟杰,张晓辉,朱建秋,朱扬勇.关联规则挖掘综述[J].计算机工程,2001,27(5):31-33. 被引量:140
  • 5Spirtes P, Glymour C, Scheines R. Causation, Prediction and Search. New York, USA:Springer-Verlag, 1993.
  • 6Pearl J. Causality: Models, Reasoning, and Inference. Cambridge, UK: Cambridge University Press, 2000.
  • 7Glymour C, Cooper G F. Computation, Causation, and Discovery. Cambridge, USA: MIT Press, 1999.
  • 8Cheng J, Beu D A. Learning Belief Networks from Data: An Information Theory Based Approach. In: Proe of the ACM Conference on Information and Knowledge Management. Las Vegas, USA, 1997, 325-331.
  • 9Cooper G F. A Simple Constraint-Based Algorithm for Efficiently Mining Observational Databases for Causal Relationships.Data Mining and Knowledge Discovery, 1997, 1(2): 203-224.
  • 10Wallace C, Korb K B, Dai H. Causal Discovery via MML. In: Proc of the 13th International Conference on Machine Learning. San Francisco, USA: Morgan Kaufmann Publishers, 1996, 516 -524.

二级参考文献15

  • 1[1]Usama Fayyad,Gregory Piatesky-Shapiro,Padhraic Smyth,Ramasamy Uthurusamy,editors. Advances in Knowledge Discovery and Data Mining[M].AAAI Press/The MIT Press,1996
  • 2[2]Gregory Piatesky-Shapiro,William J Frawley,editors. Knowledge Discovery in Databases[M].AAAI Press,1991
  • 3[3]http://www.mis.ccu.edu.tw/jcwang/mis.htm
  • 4[4]R Agrawal,T Imielinski,A Swami. Mining association rules between sets of items in large databases[C].Proceedings of the ACM SIGMOD Conference on Management of Data,Washington D.C,1993.5
  • 5[5]Usama M Fayyad,Gregory Piatesky-Shapiro,Padhraic Smyth. Knowledge discovery and Data Mining[C].In:Proceedings of the Second In ternational Conference on Knowledge Discovery and Datamining,AAAI Press, 1996
  • 6[6]Srikant R,Agrawal R. Mining quantitative association rules in large relational tables[C].Proceedings of the ACM SIGMOD Conference on Management of Data, 1996
  • 7[7]Rakesh Agrawal,Bamakrishnan Srikant. Fast Algorithms for Mining Association Rules[C].Proceedings of the 20th VLDB Conference,1994
  • 8[8]M Houtsma,A Swami.Set-oriented mining of association rules[R].Research Report RJ9567,IBM Almaden Research Center,1993.10
  • 9[9]R Agrawal,R Srikant. Fast algorithms for mining association rules in large datbases[R].Research Report RJ 9839,IBM Almaden Research Center,San Jose,Galifornia:1994.6
  • 10[10]O.G Piatesky-Shapiro,G Piatesky-Shapiro, editor. Discovery, analysis,and presentation of strong rules[M].Knowledge Discovery in Databases.AAAI/MIT Press, 1991.

共引文献177

同被引文献104

引证文献7

二级引证文献132

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部