期刊文献+

基于三点分段的三角多项式样条曲线 被引量:8

Piecewise Trigonometric Polynomial Spline Curves by Three-Points
在线阅读 下载PDF
导出
摘要 给出了m(m=1,2,3)次三角多项式样条曲线。与二次B样条曲线类似,曲线的每一段由相继的3 个控制顶点生成;对于等距节点,一次三角多项式样条曲线是C1连续、二次三角多项式样条曲线是G2连续、三次三角多项式样条曲线是C3连续,且讨论了3 种曲线对控制多边形的逼近及与二次B样条曲线的对比。还给出了一次三角多项式样条曲线表示椭圆和整圆的方法。通过加权混合可得到一类三角多项式样条曲线,曲线的形状随着次数m和形状参数λ的变化而改变。 Trigonometric polynomial spline curves of mth degree (m =1,2,3) are presented . Analogous to the quadratic B-spline curves, each trigonometric polynomial curve segment is generated by three consecutive control points. For equidistant knots, the trigonometric polynomial spline curves of first degree is C1 continuous, of second degree is G2 continuous and of third degree is C3 continuous. Moreover, all these kinds of curves approximate the control polygon and comparisons between trigonometric polynomial spline curves and quadratic B-spline curves are given. The first degree curve represents ellipse and circle precisely. A class of trigonometric polynomial spline curves is derived by their weighted blending. Its shape changes with degree m and shape parameter λ.
作者 吴晓勤
出处 《工程图学学报》 CSCD 北大核心 2005年第2期101-105,共5页 Journal of Engineering Graphics
基金 湖南省教育厅资助项目(04C215)
关键词 计算机应用 样条曲线 三角多项式 曲线设计 computer application spline curve trigonometric polynomial curve design
  • 相关文献

参考文献4

二级参考文献19

  • 1王西永,汪嘉业.对Nira的四点插入生成曲线方法的进一步改进[J].计算机辅助设计与图形学学报,1993,5(4):241-246. 被引量:4
  • 2[1]Hoschek J, Lasser D. Fundamentals of computer aided geometric design[M]. Wellesley, MA: A. K. Peters, 1993.
  • 3[2]Barsky B A. Computer graphics and geometric modeling using Beta-spline[M]. Heidelberg: Springer-Verlag, 1988.
  • 4[3]Gregory J A, Sarfraz M. A rational cubic spline with tension [J]. Computer Aided Geometric Design, 1990,7 (9): 1~13.
  • 5[4]Joe B. Multiple-knot and rational cubic Beta-spline[J]. ACM Trans. Graph. 1989,8:100~120.
  • 6[5]Boehm W. Rational geometric splines [J]. Computer Aided Geometric Design, 1990,7(4) :67~77.
  • 7[6]Goodman T N T. Constructing piecewise rational curves with Frenet frame continuity[J]. Computer Aided Geometric Design,1990,7(7) :15~31.
  • 8[7]Joe B. Quartic beta-splines[J]. ACM Trans. Graph. , 1990,9:301~337.
  • 9[8]Schoenberg I J. On trigonometric spline interpolation [J]. J.Math. Mech., 1964,13:795~825.
  • 10[9]Lyche T, Winther R. A stable recurrence relation for trigonometric B-splines[J]. J. Approx. Theory, 1979, 25:266~279.

共引文献294

同被引文献48

引证文献8

二级引证文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部